• Title/Summary/Keyword: AQS(Air Quality System)

Search Result 8, Processing Time 0.019 seconds

Development of Smart AQS for Commercial Vehicle for Satisfying Agreeable Environment (쾌적 환경을 위한 상용차용 스마트 AQS 개발)

  • Kim, Man-Ho;Lee, Dong-Hyun;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.496-501
    • /
    • 2008
  • Recently, many automotive companies tend to apply an air quality system (AQS), which prevents polluted air such as smoke or dust by controlling air intake actuator of vehicle, to satisfy the consumer's need for agreeable in-vehicle environment. However, performance of the traditional AQS is not satisfactory because a polluted air may enter into the inside of vehicle through the breaks of windows. Especially, the commercial vehicles such as bus or truck need to be prevented polluted air from the breaks of vehicle. Hence, as an alternative to the traditional AQS, this paper presents the architecture of smart AQS for commercial vehicle and implementation of the smart AQS. Also, the performance of the suggested system is evaluated through an experimental testbed.

Evaluation of Air Quality Inside Passenger Car with Operating Air Quality System (공기질 조절장치 작동 승용차 내부의 공기질 평가)

  • 조완근;박건호
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.573-580
    • /
    • 1998
  • This study examined the carbon dioxide ($CO_2$) pollution inside vehicles under low ventilation condition and evaluated the Air Quality System (AQS) for in-vehicle air quality using two techniques. The low ventilation condition is not recommended in order to keep oxygen-rich condition inside vehicles. Under the low ventilation condition, the in-vehicle $CO_2$ concentrations exceeded 1,000 ppm, the air qualify guidelines in the United States, Western Europe, and Japan, indicating more oxygen deficiency inside vehicles. On the contrary, with the AQS-on condition, the in-vehicle $CO_2$ concentrations were less than 1,000 ppm fer most of the driving time, indicating that the AQS could solve the problem of $CO_2$ accumulation inside vehicles under the low ventilation condition. The AQS test conducted by comparing carbon monoxide (CO) and volatile organic compound (VOC) concentrations inside two vehicles indicated that the AQS effectively decreased the in-vehicle concentrations by 21 to 36%, as compared to medium ventilation condition with the windows closed, the vent opened, and air conditioning on. In addition, The AQS test conducted by comparing the interior and exterior concentrations indicated that the AQS effectively decreased the in-vehicle concentrations by 18 to 31%, as compared to medium ventilation condition.

  • PDF

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Reliability Assessment Criteria of Air Quality System (자동차용 유해가스 검출기의 신뢰성 평가기준)

  • Choi, Man-Yeop;Park, Dong-Kyu;Oh, Geun-Tae;Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.10 no.4
    • /
    • pp.279-297
    • /
    • 2010
  • AQS(Air Quality Control System) is the important part of a car air conditioning system. This device intercepts automatically the influx of harmful waste gas. In this paper reliability assessment criteria for AQS are established in terms of quality certification test and lifetime test. The former quality certification test comprises general performance test and environmental test. Items which pass the test undergo lifetime test which guarantees the extent of mean lifetime with certain confidence.

Intelligent Air Quality Sensor System with Back Propagation Neural Network in Automobile

  • Lee, Seung-Chul;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.468-471
    • /
    • 2005
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. One chip sensor module which include above two sensing elements, humidity sensor and bad odor sensor was developed for AQS (air quality sensor) in automobile. With this sensor module, PIC microcontroller was designed with back propagation neural network to reduce detecting error when the motor vehicles pass through the dense fog area. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation. One chip microcontroller, Atmega128L (ATmega Ltd., USA) was used. For the control and display. And our developed system can intelligently detect the bad odor when the motor vehicles pass through the polluted air zone such as cattle farm.

  • PDF

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Development and Evaluation of Portable Multiple Gas Meter (휴대용 다중 가스측정 장비 개발 및 평가)

  • Jang, Hee-Joong;Kim, Eung-Sik;Park, Jong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.483-490
    • /
    • 2019
  • Assessing the effect of forest fires and measuring the gas concentration around a fire has received little attention. Therefore, the concentrations of various gases in areas surrounding a fire need to be measured by the development of a suitable device. Unlike conventional portable devices, the AQS (Air Quality System) proposed in this paper is a portable instrument that measures five types of gases simultaneously, including CO, CO2, NOx, VOCs, and NH3, and has high durability through sensor protection algorithms. A PC-based program with an AQS connection was developed to monitor the real-time changes in the gas concentration. The reliability of the developed device was proven through a comparison of the results with other commercial gas analyzers. Measurements of the concentration due to indoor and outdoor fires were performed around a fire area to review the applicability and the predicted results were obtained.

Comparison between Atmospheric Chemistry Model and Observations Utilizing the RAQMS-CMAQ Linkage, Part II : Impact on PM2.5 Mass Concentrations Simulated

  • Lee, DaeGyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 2014
  • In the companion paper (Lee et al., 2012), it was showed that CMAQ simulation using a lateral boundary conditions (LBCs) derived from RAQMS-CMAQ linkage, compared to the CMAQ results with the default CMAQ LBCs, improved ozone simulations in the conterminous US domain. In the present paper, the study is extended to investigate the influence of LBCs on PM2.5 simulation. MM5-SMOKE-CMAQ modeling system was used for meteorological field generation, emissions preparation and air quality simulations, respectively. Realtime Air Quality Modeling System (RAQMS) model assimilated with satellite observations were used to generate the CMAQ-ready LBCs. CMAQ PM2.5 simulations with RAQMS LBCs and predefined LBCs were compared with U.S. EPA Air Quality System (AQS) measurements. Mean PM2.5 lateral boundary conditions taken from RAQMS outputs showed strong variations both in the horizontal grid and vertical layers in the northern and western boundaries and affected the results of CMAQ PM2.5 predictions. CMAQ with RAQMS LBCs could improve CMAQ PM2.5 predictions resulting in the improvement of index of agreement from 0.38 to 0.63.