• Title/Summary/Keyword: APR-1400

Search Result 314, Processing Time 0.039 seconds

A Study on the Surface Roughness Behavior of Reactor Vessel Stud Holes in APR1400 Nuclear Power Plants (APR1400 원자로 용기 스터드 홀의 표면거칠기 거동에 관한 연구)

  • Kim, Dong Il;Kim, Chang Hun;Moon, Young Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.62-70
    • /
    • 2019
  • The APR1400 reactor may be operated for a long time under high temperature and pressure conditions, causing damage to the stud holes and causing stud bolts and holes to stick. The present practice is to manually remove the anti-sticking agent and foreign matter remaining in the APR1400 reactor stud hole and to visually check the surface condition of the thread to check the damage status of the threads. In the case of the APR1400 reactor stud holes, manually cleaning the threads increases the risk of radiation exposure and operator's fatigue. To avoid this, the autonomous mobile robot is used to automatically clean the reactor stud holes. The purpose of this study is to optimize the cleaning performance of the mobile robot by looking at the behavior of the surface roughness of the stud surface cleaned by the brush attached to the mobile robot due to changes in brush material, thickness of wire, and rotation speed. A microscopic approach to the surface roughness of the flank is needed to investigate the effects of the newly proposed brush of the autonomous mobile robot on the thread holes. According to this experiment, it is reasonable to use STS brush rather than Carbon one. Optimal operating conditions are derived and the safety of APR1400 reactor stud holes maintenance can be improved.

Turbine Cycle Thermal Performance Analysis of Advanced Power Reactor 1400 (신형경수로(APR1400)의 터빈 싸이클 열성능 분석)

  • Jeong, Dae-Yul;Lim, Hyuk-Soon;Jeong, Dae-Wok;Heo, Gyun-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.343-347
    • /
    • 2001
  • Advanced Pressurized Reactor 1400(APR-1400), which is a standard evolutionary advanced light water reactor(ALWR), has been developed from 1992 as one of long-term Government Project(G-7). The APR-1400 is designed to operate at the rated output of 4000MWt to produce an electric power output of around 1450MWe. The balance of plant (BOP) for the secondary system consists of main steam, feedwater, condensate, turbine generator and auxiliary system. In this paper, we describe the major design features of secondary component, balance of plant configuration, and then the turbine cycle thermal performance evaluation using PEPSE code.

  • PDF

Applicability of Plate Heat Exchanger to Plant Cooling Water Systems in Pressure Water Reactor (원자력발전소 기기냉각수계통의 판형열교환기 적용성)

  • Lim, Hyuk-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.505-510
    • /
    • 2001
  • Advanced Pressurized Reactor 1400(APR1400), which is a standard evolutionary advanced light water reactor(ALWR), has been developed from 1992 as one of long-term Government Project(G-7). The APR-1400 is designed to operate at the rated output of 4000MWt to produce an electric power output of around 1450MWe. Due to the increased electric power, In Nuclear Power plant huge quantities of heat are generated in the thermo-dynamic process used for producing electrical energy. So, There is considerationly additional cooling, Heat transfer area and increased cooling water of Heat Exchanger which take care of the different smaller cooling duties within the nuclear power plant. We review applying to PRE instead of Shell-and-Tube Heat exchanger. In this paper, we describe the major design features of PRE, Comparison between a PHE and a Shell-and-Tube Heat Exchanger, and then Applicability of Plate Heat Exchanger in Nuclear Power Plant Component Cooling water systems.

  • PDF

Large Capacity Passive Flow Control Vortex Valve (대용량 피동형 유량제어 와류 밸브)

  • Choi, N. H.;Chu, I.-C.;Chung, C. H.;Cho, B. H.;Song, C.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.635-640
    • /
    • 2004
  • The present paper provides the design specifications and working principle of flow controlling vortex valve which will be adopted in a Korean next generation reactor (APR1400). The vortex valve is installed inside the pressurized safety injection tank of APR1400, and it passively controls the water discharge flowrate from the tank. In the present study, the performance of the vortex valve have been evaluated throughout the repeated experiments in the full-scale test facility called VAPER(VAlve Performance Evaluation Rig). Based on the experimental results, it is confirmed that the currently developed vortex valve satisfies the major performance requirements of APR1400 plant design in view of the peak discharge flowrate, pressure loss coefficient, and total discharge duration time. To achieve the highest quality of the experimental results, a quality assurance program for vortex valve tests has been strictly applied.

  • PDF