• Title/Summary/Keyword: APR-1400

Search Result 314, Processing Time 0.022 seconds

Development of risk assessment framework and the case study for a spent fuel pool of a nuclear power plant

  • Choi, Jintae;Seok, Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1127-1133
    • /
    • 2021
  • A Spent Fuel Pool (SFP) is designed to store spent fuel assemblies in the pool. And, a SFP cooling and cleanup system cools the SFP coolant through a heat exchanger which exchanges heat with component cooling water. If the cooling system fails or interfacing pipe (e.g., suction or discharge pipe) breaks, the cooling function may be lost, probably leading to fuel damage. In order to prevent such an incident, it is required to properly cool the spent fuel assemblies in the SFP by either recovering the cooling system or injecting water into the SFP. Probabilistic safety assessment (PSA) is a good tool to assess the SFP risk when an initiating event for the SFP occurs. Since PSA has been focused on reactor-side so far, it is required to study on the framework of PSA approach for SFP and identify the key factors in terms of fuel damage frequency (FDF) through a case study. In this study, therefore, a case study of SFP-PSA on the basis of design information of APR-1400 has been conducted quantitatively, and several sensitivity analyses have been conducted to understand the impact of the key factors on FDF.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

Multi-batch core design study for innovative small modular reactor based on centrally-shielded burnable absorber

  • Steven Wijaya;Xuan Ha Nguyen;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.907-915
    • /
    • 2024
  • Various core designs with multi-batch fuel management (FM) are proposed and optimized for an innovative small modular reactor (iSMR), focusing on enhancing the inherent safety and neutronic performance. To achieve soluble-boron-free (SBF) operation, cylindrical centrally-shielded burnable absorbers (CSBAs) are utilized, reducing the burnup reactivity swing in both two- and three-batch FMs. All 69 fuel assemblies (FAs) are loaded with 2-cylindrical CSBA. Furthermore, the neutron economy is improved by deploying a truly-optimized PWR (TOP) lattice with a smaller fuel radius, optimized for neutron moderation under the SBF condition. The fuel shuffling and CSBA loading patterns are proposed for both 2- and 3-batch FM with the aim to lower the core leakage and achieve favorable power profiles. Numerical results show that both FM configurations achieve a small reactivity swing of about 1000 pcm and the power distributions are within the design criteria. The average discharge burnup in the two-batch core is comparable to three-batch commercial PWR like APR-1400. The proposed checker-board CR pattern with extended fingers effectively assures cold shutdown in the two-batch FM scenario, while in the three-batch FM, three N-1 scenarios are failed. The whole evaluation process is conducted using Monte Carlo Serpent 2 code in conjunction with ENDF/B-VII.1 nuclear library.

Development of a Human Error Hazard Identification Method for Introducing Smart Mobiles to Nuclear Power Plants

  • Lee, Yong-Hee;Yun, Jong-Hun;Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.261-269
    • /
    • 2012
  • Objective: The aim of this study is to develop an analysis method to extract plausible types of errors when using a smart mobile in nuclear power plants. Background: Smart mobiles such as a smart-phone and a tablet computer(smart-pad) are to be introduced to the various industries. Nuclear power plant like APR1400 already adopted many up-to-date digital devices within its main control room. With this trend, various types of smart mobiles will be inevitably introduced to the nuclear field in the near future. However nuclear power plants(NPPs) should be managed considering a big risk as a result of the trend not only economically but also socially compared to the other industrial systems. It is formally required to make sure to reasonably prevent the all hazards due to the introduction of new technologies and devices before the application to the specific tasks in nuclear power plants. Method: We define interaction segments(IS) as a main architect of interaction description, and enumerate all plausible error segments(ES) for a part of design evaluation of digital devices. Results: We identify various types of interaction errors which are coped with reasonably by interaction design using smart mobiles. Conclusion: According to the application result of the proposed method, we conclude that the proposed method can be utilized to specify the requirements to the human error hazards in digital devices, and to conduct a human factors review during the design of digital devices. Application: The proposed method can be applied to predict the human errors of the tasks related to the digital devices; therefore we can ensure the safety to apply the digital devices to be introduced to NPPs.

A Study on the necessity of development for the Curriculum related to Marine Transportation of Radioactive waste (방사성폐기물 해상운송과 관련된 교육과정 개발의 필요성에 대한 연구)

  • KIM, Jin-kwon;HONG, Jeong-Hyuk;KIM, Won-Wook;KIM, Jong-Kwan;LEE, Chang-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.920-931
    • /
    • 2017
  • Since the export of Korean-type APR 1400 in 2009 to the UAE, Korea has been achieved management performance, quality inspections, training, nuclear fuel exports for the nuclear power plant. Despite this apparent growth, there are lacking of the research on the marine transportation of radioactive waste. And the terrible accident at the Japan nuclear power plant in 2011 has caused another reconsideration such as emergency response training and plan, reinforcement of safety regulation. According to the Korean government aims to rebuild the appropriate regulation, training, education that is necessary in order to ensure the safety of marine transportation of radioactive waste. Therefore, this study analyzed the various problems identified by the team of experts for the radioactive waste and marine field, the investigation of relevant legal basis, the need for emergency response training for the person in charge of radioactive waste and suggested the simulation-based interactive curriculum during the process of safety verification related to the marine transport of mid- and low-level radioactive waste generated at the Yeon-ggwang nuclear power(Hanbit) plant in 2015.

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques (최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정)

  • Baek, Seok-Heum;Choi, Hyun-Jin;Kim, Kwang-Hong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3125-3134
    • /
    • 2010
  • Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.

Establishment of Room Based Database for Configuration Management in Nuclear Power Plant - Focusing on the Design Requirement and Facility Configuration Information - (원자력발전소의 형상관리를 위한 실(Room)기반 데이터베이스 구축에 관한 연구 - 설계요건 및 형상정보를 중심으로 -)

  • Shin, Jaeseop
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.34-45
    • /
    • 2018
  • Nuclear power plant(NPP) is a large-sacle national infrastructure with total project cost of 77 billion dollars and period of 10 years or more. Moreover, since it is operated over 60 years, NPP is a facility closely related to national economy and public safety. Therefore, accurate information and consistent physical configuration should be maintained to enable accurate and economical decision making in NPP project process such as design, construction, operation, and decommission. Since NPP industry is more complicate and regulated than other industries, the importance of configuration management(CM) has been widely recognized in the early days. However, there were limitations in implementing systematic CM due to unclear purpose and subject. Therefore, this paper suggests a room-based database for CM in NPP reflects design requirements and facility configuration information.

Analyses of Vertical Seismic Responses of Seismically Isolated Nuclear Power Plant Structures Supported by Lead Rubber Bearings (납적층고무받침(LRB)으로 지지된 면진 원전 구조물의 수직방향 지진응답 분석)

  • Cho, Sung Gook;Yun, Sung Min;Kim, Dookie;Hoo, Kee Jeung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2015
  • It is very important to assure the seismic performance of equipment as well as building structures in seismic design of nuclear power plant(NPP). Seismically isolated structures may be reviewed mainly on the horizontal seismic responses. Considering the equipment installed in the NPP, the vertical earthquake responses of the structure also should be reviewed. This study has investigated the vertical seismic demand of seismically isolated structure by lead rubber bearings(LRBs). For the numerical evaluation of seismic demand of the base isolated NPP, the Korean standard nuclear power plant (APR1400) is modeled as 4 different models, which are supported by LRBs to have 4 different horizontal target periods. Two real earthquake records and artificially generated input motions have been used as inputs for earthquake analyses. For the study, the vertical floor response spectra(FRS) were generated at the major points of the structure. As a results, the vertical seismic responses of horizontally isolated structure have largely increased due to flexibility of elastomeric isolator. The vertical stiffness of the bearings are more carefully considered in the seismic design of the base-isolated NPPs which have the various equipment inside.

Investigation of a best oxidation model and thermal margin analysis at high temperature under design extension conditions using SPACE

  • Lee, Dongkyu;No, Hee Cheon;Kim, Bokyung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.742-754
    • /
    • 2020
  • Zircaloy cladding oxidation is an important phenomenon for both design basis accident and severe accidents, because it results in cladding embrittlement and rapid fuel temperature escalation. For this reason during the last decade, many experts have been conducting experiments to identify the oxidation phenomena that occur under design basis accidents and to develop mathematical analysis models. However, since the study of design extension conditions (DEC) is relatively insufficient, it is essential to develop and validate a physical and mathematical model simulating the oxidation of the cladding material at high temperatures. In this study, the QUENCH-05 and -06 experiments were utilized to develop the best-fitted oxidation model and to validate the SPACE code modified with it under the design extension condition. It is found out that the cladding temperature and oxidation thickness predicted by the Cathcart-Pawel oxidation model at low temperature (T < 1853 K) and Urbanic-Heidrick at high temperature (T > 1853 K) were in excellent agreement with the data of the QUENCH experiments. For 'LOCA without SI' (Safety Injection) accidents, which should be considered in design extension conditions, it has been performed the evaluation of the operator action time to prevent core melting for the APR1400 plant using the modified SPACE. For the 'LBLOCA without SI' and 'SBLOCA without SI' accidents, it has been performed that sensitivity analysis for the operator action time in terms of the number of SIT (Safety Injection Tank), the recovery number of the SIP (Safety Injection Pump), and the break sizes for the SBLOCA. Also, with the extended acceptance criteria, it has been evaluated the available operator action time margin and the power margin. It is confirmed that the power can be enabled to uprate about 12% through best-estimate calculations.

Effect of critical flow model in MARS-KS code on uncertainty quantification of large break Loss of coolant accident (LBLOCA)

  • Lee, Ilsuk;Oh, Deogyeon;Bang, Youngseog;Kim, Yongchan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.755-763
    • /
    • 2020
  • The critical flow phenomenon has been studied because of its significant effect for design basis accidents in nuclear power plants. Transition points from thermal non-equilibrium to equilibrium are different according to the geometric effect on the critical flow. This study evaluates the uncertainty parameters of the critical flow model for analysis of DBA (Design Basis Accident) with the MARS-KS (Multi-dimensional Analysis for Reactor Safety-KINS Standard) code used as an independent regulatory assessment. The uncertainty of the critical flow model is represented by three parameters including the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio, and their ranges are determined using large-scale Marviken test data. The uncertainty range of the thermal non-equilibrium factor is updated by the MCDA (Model Calibration through Data Assimilation) method. The updated uncertainty range is confirmed using an LBLOCA (Large Break Loss of Coolant Accident) experiment in the LOFT (Loss of Fluid Test) facility. The uncertainty ranges are also used to calculate an LBLOCA of the APR (Advanced Power Reactor) 1400 NPP (Nuclear Power Plants), focusing on the effect of the PCT (Peak Cladding Temperature). The results reveal that break flow is strongly dependent on the degree of the thermal non-equilibrium state in a ruptured pipe with a small L/D ratio. Moreover, this study provides the method to handle the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio in the system code.