• Title/Summary/Keyword: API recommendation

Search Result 40, Processing Time 0.028 seconds

Malware Family Recommendation using Multiple Sequence Alignment (다중 서열 정렬 기법을 이용한 악성코드 패밀리 추천)

  • Cho, In Kyeom;Im, Eul Gyu
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.289-295
    • /
    • 2016
  • Malware authors spread malware variants in order to evade detection. It's hard to detect malware variants using static analysis. Therefore dynamic analysis based on API call information is necessary. In this paper, we proposed a malware family recommendation method to assist malware analysts in classifying malware variants. Our proposed method extract API call information of malware families by dynamic analysis. Then the multiple sequence alignment technique was applied to the extracted API call information. A signature of each family was extracted from the alignment results. By the similarity of the extracted signatures, our proposed method recommends three family candidates for unknown malware. We also measured the accuracy of our proposed method in an experiment using real malware samples.

Design and Implementation of Voice-based Interactive Service KIOSK (음성기반 대화형 서비스 키오스크 설계 및 구현)

  • Kim, Sang-woo;Choi, Dae-june;Song, Yun-Mi;Moon, Il-Young
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.99-108
    • /
    • 2022
  • As the demand for kiosks increases, more users complain of discomfort. Accordingly, a kiosk that enables easy menu selection and order by producing a voice-based interactive service is produced and provided in the form of a web. It implements voice functions based on the Annyang API and SpeechSynthesis API, and understands the user's intention through Dialogflow. And discuss how to implement this process based on Rest API. In addition, the recommendation system is applied based on collaborative filtering to improve the low consumer accessibility of existing kiosks, and to prevent infection caused by droplets during the use of voice recognition services, it provides the ability to check the wearing of masks before using the service.

Deep Neural Network-Based Beauty Product Recommender (심층신경망 기반의 뷰티제품 추천시스템)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

A Design and Implementation of Temperature-based Coordination Recommendation Application (체감 온도 기반의 코디 추천 애플리케이션 설계 및 구현)

  • Won Joo Lee;Chae-Ryeong Han;Seo-Young Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.187-188
    • /
    • 2023
  • 본 논문에서는 안드로이드 플랫폼 기반의 스마트폰에 내장된 GPS 센서와 카카오 로그인 API, 기상청 API, 유튜브 라이브러리, 크롤링을 활용한 체감 온도 기반 코디 추천 애플리케이션을 설계하고 구현한다. 카카오 로그인 API를 활용한 제삼자 로그인 인증 방식을 사용하고 사용자별 체질 정보를 입력받아 개인화된 옷차림 정보를 제공하도록 구현한다. 또한 GPS 센서로 받아온 위치 정보를 기상청 API와 연동하여 사용자의 현재 위치에 해당하는 날씨 정보와 체감 온도를 계산하여 제공하도록 구현한다. 그리고 유튜브 라이브러리를 사용하여 유튜브 코디 영상을 제공하여 사용자의 코디에 도움을 주도록 구현한다.

  • PDF

Implementation of product recommendation system through mashup of weather information and peripheral information (기상정보와 주변 정보의 매시업을 통한 상품추천시스템 구현)

  • Lee, Ju-Eun;Kim, You-Jin;Kim, Chae-Yeon;Lee, Eun-Sol;Jang, Jae Suk;Kim, Sung-Jin;Choi, Jae-Hong;Lee, Jun-Dong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.153-155
    • /
    • 2019
  • 본 논문에서는 다양한 아두이노 무선센서 모듈과 Raspberry Pi, 웹서버를 이용한 IOT 기반 환경정보 수집시스템과 기상청 API를 통한 기상정보, 상점 서비스를 매시업하여 상품추천시스템을 구현하였다. 이 시스템은 사용자가 주변 환경의 데이터를 정확하게 확인하고 그에 맞는 상품을 추천받을 수 있도록 한다. 상품추천시스템에서는 상점 외부에 부착된 환경정보 수집시스템에서 측정한 데이터와 기상청 API 데이터를 DB에 저장하고 DB에 저장된 데이터를 이용하여 상황에 맞는 기후화면디자인과 환경정보 데이터를 html로 구성하여 보여준다. Raspverry Pi에 연결된 모니터를 통해 실시간으로 정보를 보여주며 일정 시간 간격으로 관련 상품 광고를 보여주며 필요한 물건을 추천해준다.

  • PDF

Public Data-Based Outing Route Recommendation System (공공데이터 기반의 나들이 경로 추천 시스템)

  • JungHye Min;Gyo Jin Kang;In Gi Kim;TaeMin Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.115-118
    • /
    • 2023
  • 본 논문에서는 지속되던 코로나-19 바이러스로 인한 일상의 제약이 점차 완화되는 추세 속에서 이전에 영위하지 못하던 개개인의 여가생활을 지원하기 위해 개발하였다. 제약이 완화되면서 많은 사람들이 국내 여행의사가 점차 증가된다고 분석된다. 지금 우리의 일상 속에는 인간이 직접 의사결정을 하는 부분들이 많이 줄어들었다. 공공데이터를 이용한 자동화된 경로 추천 시스템을 통해 사용자들은 의사결정의 단계 없이 제공되는 경로를 지도 API를 통해 시각적으로 이용하며 나들이 준비 과정을 간소화 시킬 것으로 예상된다.

  • PDF

Java API Pattern Extraction and Recommendation using Collocation Analysis (연어 관계 분석을 통한 Java API 패턴 추출 및 추천 방법)

  • Kwon, Chanwoo;Hwang, Sangwon;Nam, Youngkwang
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1165-1177
    • /
    • 2017
  • Many developers utilize specific APIs to develop software, and to identify the use of a particular API, a developer can refer to a website that provides the API or can retrieve the API from the web. However, the site that provides the API does not necessarily provide guidance on how to use it while it can be partially provided in many other cases. In this paper, we propose a novel system JACE (Java AST collocation-pattern extractor) as a method to reuse commonly-used code as a supplement. The JACE extracts the API call nodes, collocation patterns and analyzes the relations between the collocations to extract significant API patterns from the source code. The following experiment was performed to verify the accuracy of a defined pattern: 794 open source projects were analyzed to extract about 15M API call nodes. Then, the Eclipse plug-in test program was utilized to retrieve the pattern using the top 10 classes of API call nodes. Finally, the code search results from reference pages of the API classes and the Searchcode [1] were compared with the test program results.

Clothing-Recommendation system based on emotion and weather information (감정과 날씨 정보에 따른 의상 추천 시스템)

  • Ugli, Sadriddinov Ilkhomjon Rovshan;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.528-531
    • /
    • 2021
  • Nowadays recommendation systems are so ubiquitous, where our many decisions are being done by the means of them. We can see recommendation systems in all areas of our daily life. Therefore the research of this sphere is still so active. So far many research papers were published for clothing recommendations as well. In this paper, we propose the clothing-recommendation system according to user emotion and weather information. We used social media to analyze users' 6 basic emotions according to Paul Eckman theory and match the colour of clothing. Moreover, getting weather information using visualcrossing.com API to predict the kind of clothing. For sentiment analysis, we used Emotion Lexicon that was created by using Mechanical Turk. And matching the emotion and colour was done by applying Hayashi's Quantification Method III.

Personalized Clothing and Food Recommendation System Based on Emotions and Weather (감정과 날씨에 따른 개인 맞춤형 옷 및 음식 추천 시스템)

  • Ugli, Sadriddinov Ilkhomjon Rovshan;Park, Doo-Soon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.447-454
    • /
    • 2022
  • In the era of the 4th industrial revolution, we are living in a flood of information. It is very difficult and complicated to find the information people need in such an environment. Therefore, in the flood of information, a recommendation system is essential. Among these recommendation systems, many studies have been conducted on each recommendation system for movies, music, food, and clothes. To date, most personalized recommendation systems have recommended clothes, books, or movies by checking individual tendencies such as age, genre, region, and gender. Future generations will want to be recommended clothes, books, and movies at once by checking age, genre, region, and gender. In this paper, we propose a recommendation system that recommends personalized clothes and food at once according to the user's emotions and weather. We obtained user data from Twitter of social media and analyzed this data as user's basic emotion according to Paul Eckman's theory. The basic emotions obtained in this way were converted into colors by applying Hayashi's Quantification Method III, and these colors were expressed as recommended clothes colors. Also, the type of clothing is recommended using the weather information of the visualcrossing.com API. In addition, various foods are recommended according to the contents of comfort food according to emotions.

Driver Preference Based Traffic Information Recommender Using Context-Aware Technology (상황인식 기술을 이용한 운전자 선호도 기반 교통상세정보 추천 시스템)

  • Sim, Jae Mun;Kwon, Ohbyung;Kang, Ji Uk
    • Knowledge Management Research
    • /
    • v.11 no.2
    • /
    • pp.75-93
    • /
    • 2010
  • Even though there have been many efforts on driver's route recommendation, driver still should get involved to choose the driving path in a manual manner. Uncertain traffic information provided to the driver delays his arrival time and hence may cause diminished economic values. One of the solutions of reducing the uncertainty is to provide various kinds of traffic information, rather than send real-time information. Therefore, as the wireless communication technology improves and at the same time volume of utilizable traffic contents increases in geometrical progression, selecting traffic information based on driver's context in a timely and individual manner will be needed. Hence, the purpose of this paper is to propose a methodology that efficiently sends the rich traffic contents to the personal in-vehicle navigation. To do so, driver preference is modeled and then the recommendation algorithm of traffic information contents was developed using the preference model. Secondly, ontology based traffic situation analyzation method is suggested to automatically inference the noticeable information from the traffic context on driver's route. To show the feasibility of the idea proposed in this paper, an open API service is implemented in consideration of ease of use.

  • PDF