Malware authors spread malware variants in order to evade detection. It's hard to detect malware variants using static analysis. Therefore dynamic analysis based on API call information is necessary. In this paper, we proposed a malware family recommendation method to assist malware analysts in classifying malware variants. Our proposed method extract API call information of malware families by dynamic analysis. Then the multiple sequence alignment technique was applied to the extracted API call information. A signature of each family was extracted from the alignment results. By the similarity of the extracted signatures, our proposed method recommends three family candidates for unknown malware. We also measured the accuracy of our proposed method in an experiment using real malware samples.
Kim, Sang-woo;Choi, Dae-june;Song, Yun-Mi;Moon, Il-Young
Journal of Practical Engineering Education
/
v.14
no.1
/
pp.99-108
/
2022
As the demand for kiosks increases, more users complain of discomfort. Accordingly, a kiosk that enables easy menu selection and order by producing a voice-based interactive service is produced and provided in the form of a web. It implements voice functions based on the Annyang API and SpeechSynthesis API, and understands the user's intention through Dialogflow. And discuss how to implement this process based on Rest API. In addition, the recommendation system is applied based on collaborative filtering to improve the low consumer accessibility of existing kiosks, and to prevent infection caused by droplets during the use of voice recognition services, it provides the ability to check the wearing of masks before using the service.
Journal of Information Technology Applications and Management
/
v.26
no.6
/
pp.89-101
/
2019
Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.187-188
/
2023
본 논문에서는 안드로이드 플랫폼 기반의 스마트폰에 내장된 GPS 센서와 카카오 로그인 API, 기상청 API, 유튜브 라이브러리, 크롤링을 활용한 체감 온도 기반 코디 추천 애플리케이션을 설계하고 구현한다. 카카오 로그인 API를 활용한 제삼자 로그인 인증 방식을 사용하고 사용자별 체질 정보를 입력받아 개인화된 옷차림 정보를 제공하도록 구현한다. 또한 GPS 센서로 받아온 위치 정보를 기상청 API와 연동하여 사용자의 현재 위치에 해당하는 날씨 정보와 체감 온도를 계산하여 제공하도록 구현한다. 그리고 유튜브 라이브러리를 사용하여 유튜브 코디 영상을 제공하여 사용자의 코디에 도움을 주도록 구현한다.
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.153-155
/
2019
본 논문에서는 다양한 아두이노 무선센서 모듈과 Raspberry Pi, 웹서버를 이용한 IOT 기반 환경정보 수집시스템과 기상청 API를 통한 기상정보, 상점 서비스를 매시업하여 상품추천시스템을 구현하였다. 이 시스템은 사용자가 주변 환경의 데이터를 정확하게 확인하고 그에 맞는 상품을 추천받을 수 있도록 한다. 상품추천시스템에서는 상점 외부에 부착된 환경정보 수집시스템에서 측정한 데이터와 기상청 API 데이터를 DB에 저장하고 DB에 저장된 데이터를 이용하여 상황에 맞는 기후화면디자인과 환경정보 데이터를 html로 구성하여 보여준다. Raspverry Pi에 연결된 모니터를 통해 실시간으로 정보를 보여주며 일정 시간 간격으로 관련 상품 광고를 보여주며 필요한 물건을 추천해준다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.115-118
/
2023
본 논문에서는 지속되던 코로나-19 바이러스로 인한 일상의 제약이 점차 완화되는 추세 속에서 이전에 영위하지 못하던 개개인의 여가생활을 지원하기 위해 개발하였다. 제약이 완화되면서 많은 사람들이 국내 여행의사가 점차 증가된다고 분석된다. 지금 우리의 일상 속에는 인간이 직접 의사결정을 하는 부분들이 많이 줄어들었다. 공공데이터를 이용한 자동화된 경로 추천 시스템을 통해 사용자들은 의사결정의 단계 없이 제공되는 경로를 지도 API를 통해 시각적으로 이용하며 나들이 준비 과정을 간소화 시킬 것으로 예상된다.
Many developers utilize specific APIs to develop software, and to identify the use of a particular API, a developer can refer to a website that provides the API or can retrieve the API from the web. However, the site that provides the API does not necessarily provide guidance on how to use it while it can be partially provided in many other cases. In this paper, we propose a novel system JACE (Java AST collocation-pattern extractor) as a method to reuse commonly-used code as a supplement. The JACE extracts the API call nodes, collocation patterns and analyzes the relations between the collocations to extract significant API patterns from the source code. The following experiment was performed to verify the accuracy of a defined pattern: 794 open source projects were analyzed to extract about 15M API call nodes. Then, the Eclipse plug-in test program was utilized to retrieve the pattern using the top 10 classes of API call nodes. Finally, the code search results from reference pages of the API classes and the Searchcode [1] were compared with the test program results.
Nowadays recommendation systems are so ubiquitous, where our many decisions are being done by the means of them. We can see recommendation systems in all areas of our daily life. Therefore the research of this sphere is still so active. So far many research papers were published for clothing recommendations as well. In this paper, we propose the clothing-recommendation system according to user emotion and weather information. We used social media to analyze users' 6 basic emotions according to Paul Eckman theory and match the colour of clothing. Moreover, getting weather information using visualcrossing.com API to predict the kind of clothing. For sentiment analysis, we used Emotion Lexicon that was created by using Mechanical Turk. And matching the emotion and colour was done by applying Hayashi's Quantification Method III.
KIPS Transactions on Software and Data Engineering
/
v.11
no.11
/
pp.447-454
/
2022
In the era of the 4th industrial revolution, we are living in a flood of information. It is very difficult and complicated to find the information people need in such an environment. Therefore, in the flood of information, a recommendation system is essential. Among these recommendation systems, many studies have been conducted on each recommendation system for movies, music, food, and clothes. To date, most personalized recommendation systems have recommended clothes, books, or movies by checking individual tendencies such as age, genre, region, and gender. Future generations will want to be recommended clothes, books, and movies at once by checking age, genre, region, and gender. In this paper, we propose a recommendation system that recommends personalized clothes and food at once according to the user's emotions and weather. We obtained user data from Twitter of social media and analyzed this data as user's basic emotion according to Paul Eckman's theory. The basic emotions obtained in this way were converted into colors by applying Hayashi's Quantification Method III, and these colors were expressed as recommended clothes colors. Also, the type of clothing is recommended using the weather information of the visualcrossing.com API. In addition, various foods are recommended according to the contents of comfort food according to emotions.
Even though there have been many efforts on driver's route recommendation, driver still should get involved to choose the driving path in a manual manner. Uncertain traffic information provided to the driver delays his arrival time and hence may cause diminished economic values. One of the solutions of reducing the uncertainty is to provide various kinds of traffic information, rather than send real-time information. Therefore, as the wireless communication technology improves and at the same time volume of utilizable traffic contents increases in geometrical progression, selecting traffic information based on driver's context in a timely and individual manner will be needed. Hence, the purpose of this paper is to propose a methodology that efficiently sends the rich traffic contents to the personal in-vehicle navigation. To do so, driver preference is modeled and then the recommendation algorithm of traffic information contents was developed using the preference model. Secondly, ontology based traffic situation analyzation method is suggested to automatically inference the noticeable information from the traffic context on driver's route. To show the feasibility of the idea proposed in this paper, an open API service is implemented in consideration of ease of use.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.