• Title/Summary/Keyword: API Steel

Search Result 123, Processing Time 0.034 seconds

Evaluation of Fracture Toughness on High Frequency Electric Resistance Welded API 5LB Steel Pipe (API 5LB강관의 고주파전기저항용접부에 관한 파괴인성 평가)

  • 오세욱;윤한기;안계원
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.127-137
    • /
    • 1987
  • The evaluation of the elastic-plastic fracture toughness $J_{1C}$ was performed on the center of weld metal(CWM), the heat affected zone (HAZ) and the base metal (BM) of API 5LB steel pipes welded by the high frequency electric resistance welding. The $J_{1C}$ was evaluated by the JSME R-Curve and JSME SZW methods using the smooth and side-grooved specimens. The results are as follows; (1) The $J_{1C}$ values by the SZW method are overestimated as compared with those by the R-curve method, because the micro-crack is formed as SZW increase with the deformation at SZ after initiation of the ductile crack. (2) The everage of $J_{1C}$ values by the the R-curve and the SZW methods in side-grooved specimens tended to decrease in comparison with smooth specimens 9.42% at CWM, 4.2% at HAZ, 23.2% at BM, respectively. (3) The boundary of the fatigue pre-crack, stretched zone, and dimple regions appeared more clearly in side-grooved specimens, for the slight change of SZW in the direction of the plate thickness, as compared with smooth specimens.

  • PDF

A Study on the Welding Process of High Strength Steel Pipe in GTAW-SMAW and SAW (GTAW-SMAW와 SAW를 이용한 고장력강관의 용접에 대한 연구)

  • 이철구;조선근
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.41-49
    • /
    • 1994
  • This study is to compare the welding quality of API 5L-X65 Steel- pipe's for natural gas transmission piping applied by SAW at shop and by GTAW-SMAW at site. The results can be summarized as follows; 1) Tensile strength of the welded zone by SAW(611.5 MPa) and by GTAW-SMAW(608.6 MPa) was maintained greater than that of the base metal(583.5 MPa). 2) Hardness of the welded zone and HAZ by SAW(Hv 194.8) & GTAW-SMAW (Hv 196.1) was slightly increased above that of the base metal (Hv 168.8), but less than the maximum allowable hardness(Hv 248). 3) Impact value of the welded zone by SAW(126.8 J) & GTAW-SMAW(88 J) became lower than that of the base metal(282.5 J), but was above the requirement of API 5L(68J). 4) Microscopic structure of the welded zone and HAZ by both SAW & GTAW-SMAW became fine-grained.

  • PDF

Effect of Weld Improvement on the Corroded Fatigue Life of Welded Structures (용접구조물의 부식피로수명에 미치는 용접부 개선처리 효과)

  • Im, Sung-Woo;Chang, In-Hwa;Kim, Sang-Shik;Song, Ha-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.50-57
    • /
    • 2008
  • The effect of weld improvement on the corroded fatigue life of welded structures was investigated. Toe grinding, TIG dressing and weld profiling were used as the geometric improvement methods. Fatigue tests under the corroded condition in artificial seawater were carried out to investigate the corrosion fatigue behavior of API 2W Gr.50T steel plate produced by POSCO. The test results in weld improved conditions were compared with those in as-welded condition. The test results were also compared with the design curves in UK DEn Class F. Corroded fatigue life of weld improved specimens was longer than that of as-welded specimen. Especially, the corroded fatigue life exceeded the mean SN curve in air of UK DEn Class F.

Effect of Cr Addition to High Mn Steel on Flow-Accelerated Corrosion Behaviors in Neutral Aqueous Environments (Cr 첨가가 고망간강의 중성 수용액 환경 내 유동가속부식 거동에 미치는 영향)

  • Jeong, Yeong Jae;Park, Jin Sung;Bang, Hye Rin;Lee, Soon Gi;Choi, Jong Kyo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.373-383
    • /
    • 2021
  • The effect of Cr addition to high Mn steel on flow-accelerated corrosion (FAC) behavior in a neutral aqueous environment was evaluated. For comparison, two types of conventional ferritic steels (API X70 steel and 9% Ni steel) were used. A range of experiments (electrochemical polarization and impedance tests, weight loss measurement, and metallographic observation of corrosion scale) were conducted. This study showed that high Mn steel with 3% Cr exhibited the highest resistance to FAC presumably due to the formation of a bi-layer scale structure composed of an inner Cr enriched Fe oxide and an outer Mn substituted partially with Fe oxide on the surface. Although the high Mn steels had the lowest corrosion resistance at the initial corrosion stage due to rapid dissolution kinetics of Mn elements on their surface, the kinetics of inner scale (i.e. Cr enriched Fe oxide) formation on Cr-bearing high Mn steel was faster in dynamic flowing condition compared to stagnant condition. On the other hand, the corrosion scales formed on API X70 and 9% Ni steels did not provide sufficient anti-corrosion function during the prolonged exposure to dynamic flowing conditions.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Effect of Heat Input of Outside Weld on Low Temperature Toughness of Inside Weld for Multiple Electrode SA Welded API 5L X70 with Sour Gas Resistance (내부식용 API 5L X70 다전극 SAW 용접부의 내면 저온인성에 미치는 외면 입열의 영향)

  • An, Hyun-Jun;Lee, Hee-Keun;Park, Young-Gyu;Eun, Seong-Su;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • This study aims to investigate the effect of heat input of outside SAW weld on low temperature toughness($-20^{\circ}C$) of inside SAW weld for API 5L X70 with sour gas resistance. As increasing heat input of the outside weld, low temperature toughness of the inside weld was decreased. Especially, in spite of the same heat input, the value of low temperature toughness was fluctuated. On the basis of fracture and microstructure analysis, the low temperature toughness is correlated with the fracture area ratio of shear lips and four kinds of fracture sections. These sections were divided with size and shape of dimple correlated with grain boundary ferrite and cleavage correlated acicular and polygonal ferrite in grain. Therefore, it was seen that these sections were two of final solidification area in the inside weld and the outside weld, no reheated zone and reheated zone in the inside weld. In conclusion, it is thought that the difference of low temperature toughness at the same heat input is due to the fact that each of impact test specimens could have the different microstructure, even though the notch was machined under the error tolerance of 1mm. It is because the final solidification area of the inside weld is very narrow.

Correlation Study of Microstructure and Mechanical Properties in Heat Affected Zones of API X80 Pipeline Steels containing Complex Oxides (복합산화물이 형성된 API X80 라인파이프강의 용접열영향부 미세조직과 기계적 특성의 상관관계 연구)

  • Shin, Sang Yong;Oh, Kyoungsik;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.59-70
    • /
    • 2009
  • This study is concerned with the correlation between microstructure and mechanical properties in heat affected zones (HAZs) of API X80 pipeline steels containing complex oxides. Three kinds of specimens were fabricated by varying alloying elements of Ti, Al, and Mg to form complex oxides, and their microstructures, Vickers hardness, Charpy impact properties were investigated. The number of complex oxides increased as the excess amount of Ti, Al, and Mg was included in the steels. The simulated HAZs containing a number of oxides showed a high volume fraction of acicular ferrite region because oxides acted as nucleation sites for acicular ferrite. According to the correlation study between thermal input, volume fraction of acicular ferrite region, and Charpy impact properties, the ductile fracture occurred predominantly when the volume fraction of acicular ferrite region was 65% or higher, and the Charpy absorbed energy was excellent over 200 J. When the volume fraction of acicular ferrite region was 35% or lower, the Charpy absorbed energy was poor below 50 J as the brittle cleavage fracture occurred. These findings suggested that the active nucleation of acicular ferrite in the oxide-containing steel HAZs was associated with the great improvement of Charpy impact properties of the HAZs.

Effect of Mo, Cr, and V on Tensile and Charpy Impact Properties of API X80 Linepipe Steels Rolled in Single Phase Region (단상영역에서 압연된 API X80 라인파이프강의 인장 및 샤르피 충격 특성에 미치는 Mo, Cr, V의 영향)

  • Han, Seung Youb;Shin, Sang Yong;Seo, Chang-hyo;Lee, Hakcheol;Bae, Jin-ho;Kim, Kisoo;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.788-799
    • /
    • 2008
  • This study is concerned with the effects of Mo, Cr, and V addition on tensile and Charpy impact properties of API X80 linepipe steels. Four kinds of steels were processed by varying Mo, Cr, and V additions, and their microstructures and tensile and Charpy impact properties were investigated. Since the addition of Mo and V promoted to form fine acicular ferrite and granular bainite, while prohibiting the coarsening of granular bainite, it increased the strength and upper shelf energy, and decreased the energy transition temperature. The Cr addition promoted the formation of coarse granular bainite and secondary phases such as martensite-austenite constituents, thereby leading to the increased effective grain size, energy transition temperature, and strength and to the decreased upper shelf energy. The steel containing 0.3wt.% Mo and 0.06wt.% V without Cr had the highest upper shelf energy and the lowest energy transition temperature because its microstructure was composed of fine acicular ferrite and granular bainite, together with a small amount of hard secondary phases, while its tensile properties maintained excellent.

Effect of Cooling Conditions on Microstructures and Mechanical Properties in API X80 Linepipe Steels (API X80 라인파이프강의 미세조직과 기계적 특성에 미치는 냉각조건의 영향)

  • Han, Seung Youb;Shin, Sang Yong;Lee, Sunghak;Bae, Jin-ho;Kim, Kisoo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.523-532
    • /
    • 2009
  • In this study, four API X80 linepipe steel specimens were fabricated with varying cooling rates and finish cooling temperatures, and their microstructures and crystallographic orientations were analyzed to investigate the effects of cooling conditions on their tensile and Charpy impact properties. All the specimens consisted of acicular ferrite, granular bainite, and secondary phases such as martensite and martensiteaustenite constituent. The volume fraction of secondary phases increased with increasing cooling rate, and the higher finish cooling temperature resulted in the reduction in volume fraction and grain size of secondary phases. According to the crystallographic orientation analysis data, the effective grain size and unit crack path decreased as fine acicular ferrites having a large amount of high-angle grain boundaries were homogeneously formed, thereby leading to the improvement of Charpy impact properties. The specimen fabricated with the higher cooling rate and lower finish cooling temperature had the highest upper shelf energy and the lowest energy transition temperature because it contained a large amount of fine secondary phases homogeneously distributed inside fine acicular ferrites, while its tensile properties well maintained.