• Title/Summary/Keyword: APEX model

Search Result 143, Processing Time 0.043 seconds

Evaluating the Performance of APEX-Paddy Model using the Monitoring Data of Paddy Fields in Iksan, South Korea (국내 논필지 모니터링 자료를 이용한 APEX-Paddy 모델 적용성 평가)

  • Kamruzzaman, Mohammad;Cho, Jaepil;Choi, Soon-Kun;Song, Jung-Hun;Song, Inhong;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • The APEX model has been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. Recently, a key component of APEX application, named APEX-Paddy, has been modified for simulating water quality by considering paddy rice management practices. In this study, the performance of the APEX-Paddy model was evaluated using field data at Iksan experimental paddy sites in Korea. The discharge and pollutant load data during 2013 and 2014 were used to both manually and automatically calibrate the model. The APEX auto-calibration tool (APEX-CUTE 4.1) was used for model calibration and sensitivity analysis. Results indicate that APEX-Paddy reasonably performs in predicting runoff discharge rate and nitrogen yield. However, sediment and phosphorus yield is not correctly predicted due to the limitation of model schemes. With APEX-Paddy, the performance in reproducing the discharge and nitrogen yield is found to be a satisfactory level after manual calibration. The manually calibrated model performed better than the automatically calibrated model in nearly all comparisons. For runoff, manual calibration reduced PBIAS while R2 and NSE values of the automatically calibrated model were the same as the manual calibration. For T-N, NSE and PBIAS were reduced when using manual calibration, whereas R2 value was the same as manual calibration. The limitation of the APEX-Paddy model for predicting sediment, as well as the phosphorous yield, was discussed in this study.

Construction of Database for Application of APEX Model in Korea and Evaluation of Applicability to Highland Field (APEX 모델의 국내 적용을 위한 데이터베이스 구축 및 고랭지 밭에 대한 적용성 평가)

  • Koo, Ja-Young;Kim, Jonggun;Choi, Soon-Kun;Kim, Min-Kyeong;Jeong, Jaehak;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.89-100
    • /
    • 2017
  • The Agricultural Policy/Environmental eXtender (APEX) model was developed to extend EPIC's capabilities of simulating land management impacts for small-medium watershed and heterogeneous farms. APEX is a flexible and dynamic tool that is capable of simulating a wide array of management practices, cropping systems, and other land uses across a broad range of agricultural landscapes. APEX have its own agricultural environmental database including operation schedule, soil property, and weather data etc., by crops. However, agriculture environmental informations the APEX model has is all based on U.S. As this can cause malfunction or improper simulation while simulating highland field. In this study, database for APEX model to be utilized for South Korea established with 44,814 agriculture fields in Pyeongchang-gun, Korea from 2007 to 2016. And assessed domestic applicability by comparing T-P unit load criteria presented by National Institution of Environmental Research and result of APEX model. As a result of APEX model simulation, average T-P value for decade was 6.18. Average T-P of every year except 2011 was in range of 5.37~10.43 and this is being involved into criteria presented by National Institution of Environmental Research. It is analyzed that adjusting slope factor can make the model applicable for domestic agricultural environment.

The Applicability of SWAT-APEX Model for Agricultural Nonpoint Source Pollution Assessment (농업 비점오염원 평가를 위한 SWAT-APEX 모델의 적용성 검토)

  • Jung, Chung-Gil;Park, Jong-Yoon;Lee, Ji-Wan;Jung, Hyuk;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.35-42
    • /
    • 2011
  • This study is to check the applicability of SWAT-APEX (Soil and Water Assessment Tool-Agricultural Policy / Environmental eXtender) model as combined watershed and field models by applying the APEX to paddies in a watershed (465.1 $km^2$) including Yedang reservoir. Firstly, the SWAT were calibrated with 3 years (2000~2002) daily streamflow and monthly water quality (T-N and T-P) data, and validated for another 3 years (2003~2005) data. The average Nash-Sutcliffe model efficiency (ME) of streamflow during validation was 0.73, and the coefficient of determination ($R^2$) of T-N and T-P were 0.77 and 0.73 respectively. Next, running the SWAT-APEX model with the SWAT calibrated parameters for paddies, the $R^2$ of T-N and T-P were 0.80 and 0.76 respectively. The results showed that SWAT-APEX model was more correctly predicted for T-N and T-P loads than SWAT model. The difference results between watershed and field models was predicted to have substantial impact on NPS loads, especially on T-N and T-P loads. Therefore, to improve negative NPS load simulations should be considered the model characteristics as simulating mechanism to properly select the NPS model for agricultural watershed.

Calibration of APEX-Paddy Model using Experimental Field Data

  • Mohammad, Kamruzzaman;Hwang, Syewoon;Cho, Jaepil;Choi, Soon-Kun;Park, Chanwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.155-155
    • /
    • 2019
  • The Agricultural Policy/Environmental eXtender (APEX) models have been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. National Academy of Agricultural Sciences, Wanju, Korea, has modified a key component of APEX application, named APEX-Paddy for simulating water quality with considering appropriate paddy management practices, such as puddling and flood irrigation management. Calibration and validation are an anticipated step before any model application. Simple techniques are essential to assess whether or not a parameter should be adjusted for calibration. However, very few study has been done to evaluate the ability of APEX-Paddy to simulate the impact of multiple management scenarios on nutrients loss. In this study, the observation data from experimental fields at Iksan in South Kora was used in calibration and evaluation process during 2013-2015. The APEX auto- calibration tool (APEX-CUTE) was used for model calibration and sensitivity analysis. Four quantitative statistics, the coefficient of determination ($R^2$),Nash-Sutcliffe(NSE),percentbias(PBIAS)androotmeansquareerror(RMSE)were used in model evaluation. In this study, the hydrological process of the modified model, APEX-Paddy, is being calibrated and tested in predicting runoff discharge rate and nutrient yield. Field-scale calibration and validation processes are described with an emphasis on essential calibration parameters and direction regarding logical sequences of calibration steps. This study helps to understand the calibration and validation way is further provided for applications of APEX-Paddy at the field scales.

  • PDF

IN VITRO EVALUATION OF THE CONSISTENCY OF TWO ELECTRONIC APEX LOCATORS (2종 전자근관장측정기의 일관성에 관한 in vitro 연구)

  • Hwang, Gyu-Young;Roh, Byoung-Duck;Kim, Eui-Sung;Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.20-27
    • /
    • 2008
  • The purpose of this study was to evaluate the consistency of two electronic apex locators in vitro model. Materials consisted of fifty two extracted premolars and two electronic apex locators; Root ZX (J. Morita, Osaka, Japan) and E-Magic Finder Deluxe (S-Denti. Cheonan, Korea). After access preparation, the teeth were embedded in a saline-mixed alginate model. Canal lengths of each tooth were measured at "0.5" and "Apex" mark of the apex locators, respectively so that each tooth had two measurements from 0.5 and Apex points. The file was fixed at final measurement using a glass ionomer cement. The apical 4 mm from the apex was exposed to measure the distance from the file tip to the major apical foramen of each tooth. Average distances and standard deviations were used to evaluate the consistency. Results showed that all measurements of both Root ZX and E-Magic Finder located the major foramen the range of ${\pm}0.5\;mm$ level. Both apex locators showed better consistency at Apex mark than at 0.5 mark. The average distance of file tip-major foramen was - 0.18 mm at 0.5 mark and - 0.07 mm at Apex mark in Root ZX, - 0.25 mm at 0.5 mark and - 0.02 mm at Apex mark in E-Magic Finder. Standard deviation was 0.21 at 0.5 mark and 0.12 at Apex mark in Root ZX, 0.12 at 0.5 mark and 0.09 at Apex mark in E-Magic Finder.

Evaluation of Stream Water Quality by Using the SWAPP (SWAT-APEX Program) Model Including Yedang Reservoir Watershed (수질모델링을 위한 SWAPP (SWAT-APEX Program) 모형의 적용성 평가 -예당저수지 유역을 대상으로-)

  • Jung, Chung-Gill;Park, Jong-Yoon;Joh, Hyung-Kyung;Lee, Jun-Woo;Kwon, Hyung-Joong;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.179-179
    • /
    • 2011
  • 근래 농촌지역에서의 하천 및 저수지의 수질오염에 관하여 관심이 고조됨에 따라 비오염원에 대한 파악과 대책을 세우기 위해 관련분야에서 많은 연구가 진행 되고 있다. 비점오염원은 주로 강우나 유출에 의해 배출되기 때문에 배출 장소와 경로가 불분명하고 다양하다. 비점오염의 관리를 위한 유역모델로 SWAT (Soil and Water Assessment Tool) 모델을 이용한 연구가 광범위하게 사용되고 있다. 그러나 SWAT 모델은 유역모델로써 농촌지역에 논, 밭에서의 비점오염원 기작을 표현하기에는 공간적 범위의 한계가 있다. 이에 본 연구에서는 예당저수지 유역(465.12 km2)을 대상으로 유역규모의 SWAT 모델과 유역-필드규모에 적용 가능한 SWAT-APEX (Agricultural Policy/Environmental eXtender) 모델의 수질(T-N, T-P) 모의결과를 비교하여 SWAT-APEX 모델의 적용성을 평가하고자 하였다. 모형의 적용을 위한 입력자료로 기상자료와 지형자료를 구축하였으며 기상자료로 예당저수지유역 3개의 강우관측소 자료를 수집하여 구축하였으며, 지형자료로 격자크기 30m의 DEM (Digital Elevation Model)과 농촌진흥청에서 제공하는 1:25,000 정밀토양도와 토지이용도는 환경부로부터 1:25,000 중분류 토지이용도를 이용하였다. 또한 환경부에서 제공하는 월단위 하천수질 자료(기간)를 구축하여 모형의 검증을 실시하였다. 분석과정으로 SWAT 모델에서의 유역차원 수문, 수질 모의를 한 후, APEX 모델을 이용하여 소유역별 논, 밭에 대한 필드단위에 오염물질 모의 후 각각 소유역 출구에서 APEX 모델에 결과를 반영한 SWAT-APEX 모의를 거쳐 최종 유역출구에서의 유출량과 수질항목을 분석하였다. 모의 결과 유출량에 대해 Nash와 Sutcliffe (1970)가 제안한 모델효율성계수 (Model Efficient, ME)는 0.67, 결정계수는 0.69 그리고 수질항목의 결정계수는 각각 0.77, 0.75으로 분석되었다. 또한, SWAT-APEX 모의 결과 수질항목의 결정계수는 각각 0.80, 0.72이었다. 따라서, 본 연구에서 농촌지역의 비점오염원 모의는 필드모의를 반영한 SWAT-APEX 모델 결과가 SWAT 모델만 적용한 결과보다 정확한 비점오염 모의가 이루어졌다고 판단 할 수 있다.

  • PDF

Development of QAPEX Module using Open Source GIS (오픈 소스 기반의 GIS 소프트웨어를 이용한 QAPEX 모듈 개발)

  • Koo, Ja Young;Lee, Seo Ro;Choi, Soon Kun;Lim, Kyoun Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.175-175
    • /
    • 2017
  • Agricultural Policy/Environmental eXtender Model(APEX)는 전 농장 또는 소규모 유역 관리에 활용하고자 개발된 모형이다. APEX는 사용자들을 고려하고 다양한 형태로 개발하였다. 사용자들이 사용하기 쉽도록 윈도우 인터페이스 형태의 WinAPEX 모듈을 개발하기도 하였으며, ArcGIS 프로그램과 연계하여 다양한 지리정보시스템을 사용할 수 있는 ArcAPEX 모듈을 개발하기도 하였다. 그러나 WinAPEX 모듈은 유역에 대한 정보를 시각적으로 확인할 수 없다는 단점을 가지고 있으며, ArcGIS 프로그램은 유료의 라이센스라는 단점을 보유하고 있다. 본 연구에서는 이러한 단점을 극복하기 위하여 APEX 모형을 GNU General Public License 기반의 Open Source Geographic Information System(GIS)인 Quantum GIS(QGIS)와 연계하여 QAPEX 모듈을 개발하고자 하였다. QAPEX 모듈은 오픈소스 기반의 QGIS 프로그램과 APEX 모형을 이용하여 무료로 사용할 수 있으며, 사용자의 편의를 위해 유역에 대한 정보를 시각적으로 확인할 수 있다. 뿐만아니라 QGIS는 사용자간의 정보 및 자료 공유에 용이한 장점을 보유하고 있어 QAPEX를 이용하는 사용자들 간의 정보 공유로 인해 원활하고 지속적인 개선이 이루어 질 것으로 기대된다.

  • PDF

Evaluation of APEX model parameter uncertainty for runoff (유출에 대한 APEX 모형 매개변수 불확실성 평가)

  • Choo, Innkyo;Seong, Yeonjeong;Park, Jeongwoong;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.188-188
    • /
    • 2021
  • APEX(Agricultural Policy Enviromental eXtender) 모형은 일 단위로 구동되며 필지단위 및 소유역 단위에서의 흐름을 장기 모의를 할 수 있는 모형이다. APEX는 유출을 포함한 토양 침식, 탄소 이동 등 다양한 자연현상을 모의할 수 있는 모형이다. 강우에 의한 직접유출량을 APEX를 이용하여 산정할 수 있지만, 모델링 과정에서 발생하는 불확실성으로 인하여 부정적인 요인이 발생한다. 따라서 본 연구에서는 APEX 모형의 유출 매개변수를 이용한 불확실성을 평가하고자 한다. 이를 위해서 금강권역에서 표준유역으로 분류되어있는 한천 유역에 대해 2008~2019년도 유출량을 모의하였으며, 검증을 위해 동일기간에 대해 기저유출분리를 수행하였다. 불확실성 평가를 위해서 Python 기반으로 사전분포로부터 매개변수를 임의로 선택하도록 설정하여 총 10,000번의 구동을 수행하였다. 불확실성 평가지표로는 NSE, PBIAS, RSR을 이용하여 평가하여 평가지표별 불확실성 구간을 비교분석 하였다. 본 연구에서의 APEX 모형의 불확실성 평가를 통하여 APEX의 활용성을 더욱 확대하고 신뢰성을 높일 것으로 기대한다.

  • PDF

IN VITRO EVALUATION OF ACCURACY AND CONSISTENCY OF FOUR DIFFERENT ELECTRONIC APEX LOCATORS (4종 전자근관장측정기의 정확성과 일관성에 관한 in vitro 연구)

  • Cho, Jae-Hyun;Kum, Kee-Yeon;Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.390-397
    • /
    • 2006
  • The purpose of this study was to evaluate the accuracy and the consistency of four different electronic apex locators in an in vitro model. Fourty extracted premolars were used for the study. Four electronic apex locators (EAL) were Root ZX, Smarpex, Elements Diagnostic Unit (EDU), and E-Magic Finder Deluxe (EMF). After access preparation, the teeth were embedded in an alginate model and the length measurements were carried out at '0.5' and 'Apex' mark using four EALs. The file was cemented at the location of the manufacturers' instruction (Root ZX, EDU, EMF: 0.5 mark, SmarPex: Apex mark). The apical 4mm of the apex was exposed and the distance from the file tip to the major foramen was measured by Image ProPlus (${\times}100$). The distance from the file tip to the major foramen was calculated at 0.5 and Apex mark and the consistency of 0.5 and Apex mark was compared by SD and Quartile of Box plots. In this study, Root ZX and EMF located the apical constriction accurately within ${\pm}0.5 mm$ in 100%, whereas SmarPex and EDU located in 90% and in 70% respectively. For Root ZX and EMF, there was no significant difference between the consistency of 0.5 and Apex mark. However, for the EDU and SmarPex, Apex mark was more consistent than 0.5 mark. From the evaluation of the consistency in this study, for Root ZX and EMF, both 0.5 and Apex mark can be used as a standard mark. And for EDU and SmarPex, the Apex mark can be recommended to be used as a standard mark.

Water Budget Assessment for Soybean Grown in Paddy Fields Converted to Uplands Using APEX Model (APEX 모델을 이용한 콩 재배 밭 전환 논의 물수지 특성 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Yeob, So-Jin;Kim, Myung-Hyun;Kim, Min-Kyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.55-64
    • /
    • 2021
  • The expansion of upland crop cultivation in rice paddy fields is recommended by the Korean government to solve the problem of falling rice price and reduction of rice farmer's income due to oversupply of rice. However, water use efficiency is significantly influenced by the land use change from paddy field to upland. Therefore, this study aimed to evaluate the water budget of soybean grown in using APEX (Agricultural Policy and Environmental eXtender) model. The amount of runoff was measured in a test bed located in Iksan, Jeollabu-do and used to calibrate and validate the simulated runoff by APEX model. From 2019 to 2020, the water budget of soybean grown in uplands were estimated and compared with the one grown in paddy fields. The calibration result of AP EX model for runoff showed that R2 (Coefficient of determination) and NSE (Nash-Sutcliffe efficiency) were 0.90 and 0.89, respectively. In addition, the validated results of R2 and NSE were 0.81 and 0.62, respectively. The comparative study of each component in water budget showed that the amounts of evapotranspiration and percolation estimated by APEX model were 549.1 mm and 375.8mm, respectively. The direct runoff amount from upland was 390.1 mm, which was less than that from paddy fields. The average amount of irrigation water was 28.7 mm, which was very small compared to the one from paddy fields.