• Title/Summary/Keyword: APEC method

Search Result 42, Processing Time 0.025 seconds

Improved nodal equivalence with leakage-corrected cross sections and discontinuity factors for PWR depletion analysis

  • Lee, Kyunghoon;Kim, Woosong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1195-1208
    • /
    • 2019
  • This paper introduces a new two-step procedure for PWR depletion analyses. This procedure adopts the albedo-corrected parameterized equivalence constants (APEC) method to correct the lattice-based raw cross sections (XSs) and discontinuity factors (DFs) by accounting for neutron leakage. The intrinsic limitations of the conventional two-step methods are discussed by analyzing a 2-dimensional SMR with the commercial DeCART2D/MASTER code system. For a full-scope development of the APEC correction, the MASTER nodal code was modified so that the group constants can be corrected in the middle of a microscopic core depletion. The basic APEC methodology is described and color-set problems are defined to determine the APEC functions for burnup-dependent XS and DF corrections. Then the new two-step method was applied to depletion analyses of the SMR without thermal feedback, and its validity was evaluated in terms of being able to predict accurately the reactor eigenvalue and nodal power profile. In addition, four variants of the original SMR core were also analyzed for a further evaluation of the APEC-assisted depletion. In this work, several combinations of the burnup-dependent and -independent XS and DF corrections were also considered. The results show that the APEC method could enhance the nodal equivalence significantly with inexpensive additional costs.

Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique (GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가)

  • Kim, Chul Gyum;Park, Jihoon;Cho, Jaepil
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

Application of a Statistical Interpolation Method to Correct Extreme Values in High-Resolution Gridded Climate Variables (고해상도 격자 기후자료 내 이상 기후변수 수정을 위한 통계적 보간법 적용)

  • Jeong, Yeo min;Eum, Hyung-Il
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.331-344
    • /
    • 2015
  • A long-term gridded historical data at 3 km spatial resolution has been generated for practical regional applications such as hydrologic modelling. However, overly high or low values have been found at some grid points where complex topography or sparse observational network exist. In this study, the Inverse Distance Weighting (IDW) method was applied to properly smooth the overly predicted values of Improved GIS-based Regression Model (IGISRM), called the IDW-IGISRM grid data, at the same resolution for daily precipitation, maximum temperature and minimum temperature from 2001 to 2010 over South Korea. We tested various effective distances in the IDW method to detect an optimal distance that provides the highest performance. IDW-IGISRM was compared with IGISRM to evaluate the effectiveness of IDW-IGISRM with regard to spatial patterns, and quantitative performance metrics over 243 AWS observational points and four selected stations showing the largest biases. Regarding the spatial pattern, IDW-IGISRM reduced irrational overly predicted values, i. e. producing smoother spatial maps that IGISRM for all variables. In addition, all quantitative performance metrics were improved by IDW-IGISRM; correlation coefficient (CC), Index Of Agreement (IOA) increase up to 11.2% and 2.0%, respectively. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were also reduced up to 5.4% and 15.2% respectively. At the selected four stations, this study demonstrated that the improvement was more considerable. These results indicate that IDW-IGISRM can improve the predictive performance of IGISRM, consequently providing more reliable high-resolution gridded data for assessment, adaptation, and vulnerability studies of climate change impacts.

Application of Automatic Data Processing Method of MODIS Satellite Data for Drought System (MODIS 위성자료의 가뭄활용을 위한 자동 데이터 처리 기법에 관한 연구)

  • Lee, Seong Kyu;Shin, Yong Chul;Jang, Sang Min;Yoon, Sun Kwon;Park, Kyung Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.251-251
    • /
    • 2016
  • 인공위성을 이용한 가뭄연구에는 전지구적으로 운용되는 GPM (Global Precipitation Measurement) 위성, AQUA/TERRA 위성의 MODIS (MODerate resolution Imaging Spectroradiometer) 센서 등에서 수집된 관측 자료가 이용된다. 그러나 전지국적으로 관측된 위성 자료는 자료를 생산 제공하는 기관에 따라 자료의 파일포맷 (NetCDF, HDF5, GeoTIFF 등), 자료의 투영법 (projection) 등이 상이하다. 그러므로 가뭄연구에 다중위성자료를 활용하고자 하는 지리정보시스템(Geographic Information System: GIS)에 대한 전문지식이 부족한 연구자는 자료의 표준화 (파일포맷과 투영변환 등) 과정으로 인해 원활한 연구수행이 어렵다. MODIS 위성자료의 경우에는 일반적으로 많이 사용되는 횡단메르카토르 도법 (Transverse Mercator Projection: TM) 대신 시뉴소이드 도법 (sinusoidal projection)을 이용한다. 그래서 미국 지질조사국은 MODIS 자료의 재투영(reprojection)을 위한 전용 소프트웨어인 MRT (MODIS Reprojection Tool)를 배포하고 있다. 본 연구에서는 무료/오픈소스 소프트웨어를 활용하여 시뉴소이드 도법이 적용된 MODIS 자료의 수집, 재투영, 파일포맷 변환 등을 자동으로 처리하는 기법을 개발하여 가뭄활용에 이용하고자 하였으며, MODIS MOD09GA/MOD11A1 자료를 이용하여 효율성을 검증하였다.

  • PDF

A Study of Economic Assessment of Urban Park Management by Using Contingent Valuation Method - The Case of Busan APEC Memorial Park - (가상평가법(CVM)에 의한 도시공원의 관리운영에 대한 경제적 가치평가에 관한 연구 - 부산시 APEC기념공원을 대상으로 -)

  • Kim, Yeong-Ha;Park, Seung-Burm
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.2
    • /
    • pp.19-32
    • /
    • 2014
  • This study evaluated economic value recognized by the residents for the pleasant urban park management using contingent valuation method(CVM) to APEC Memorial Park in Pusan in terms of private fund development for the management of the city park. As a result, the estimated amount payable by each household for the management of APEC Memorial Park in Busan was between 5,673 won and 8,358 won. If such amount is expanded to households in park hosting area, it was 2.2~2.3 times of the park management budget in 2012, which demonstrates the willingness to pay (WTP) of residents for pleasant park was higher than the management budget. Social factors of respondents affecting WTP for city park management operation included age, educational level and income level. Those with high age and high education level had higher WTP. And, WTP was much affected by the use of park and recognition of residents. In particular, those with high frequency in the use of parks had higher WTP, and the users with more than once per week had 1.1 times higher WTP than overall WTP. Then, the satisfaction of park rather than recognition of necessity of park had led to higher WTP. Accordingly, it is necessary to manage park facility management and use program operation to enhance park satisfaction and it is also required to develop a park culture distribution policy to link such recognition to donation.

User-Centered Climate Change Scenarios Technique Development and Application of Korean Peninsula (사용자 중심의 기후변화 시나리오 상세화 기법 개발 및 한반도 적용)

  • Cho, Jaepil;Jung, Imgook;Cho, Wonil;Hwang, Syewoon
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.13-29
    • /
    • 2018
  • This study presented evaluation procedure for selecting appropriate GCMs and downscaling method by focusing on the climate extreme indices suitable for climate change adaptation. The procedure includes six stages of processes as follows: 1) exclusion of unsuitable GCM through raw GCM analysis before bias correction; 2) calculation of the climate extreme indices and selection of downscaling method by evaluating reproducibility for the past and distortion rate for the future period; 3) selection of downscaling method based on evaluation of reproducibility of spatial correlation among weather stations; and 4) MME calculation using weight factors and evaluation of uncertainty range depending on number of GCMs. The presented procedure was applied to 60 weather stations where there are observed data for the past 30 year period on Korea Peninsula. First, 22 GCMs were selected through the evaluation of the spatio-temporal reproducibility of 29 GCMs. Between Simple Quantile Mapping (SQM) and Spatial Disaggregation Quantile Delta Mapping (SDQDM) methods, SQM was selected based on the reproducibility of 27 climate extreme indices for the past and reproducibility evaluation of spatial correlation in precipitation and temperature. Total precipitation (prcptot) and annual 1-day maximum precipitation (rx1day), which is respectively related to water supply and floods, were selected and MME-based future projections were estimated for near-future (2010-2039), the mid-future (2040-2069), and the far-future (2070-2099) based on the weight factors by GCM. The prcptot and rx1day increased as time goes farther from the near-future to the far-future and RCP 8.5 showed a higher rate of increase in both indices compared to RCP 4.5 scenario. It was also found that use of 20 GCM out of 22 explains 80% of the overall variation in all combinations of RCP scenarios and future periods. The result of this study is an example of an application in Korea Peninsula and APCC Integrated Modeling Solution (AIMS) can be utilized in various areas and fields if users want to apply the proposed procedure directly to a target area.

Evaluation of Reference Evapotranspiration in South Korea according to CMIP5 GCMs and Estimation Methods (CMIP5 GCMs과 추정 방법에 따른 우리나라 기준증발산량 평가)

  • Park, Jihoon;Cho, Jaepil;Lee, Eun-Jeong;Jung, Imgook
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.4
    • /
    • pp.153-168
    • /
    • 2017
  • The main objective of this study was to assess reference evapotranspiration based on multiple GCMs (General Circulation Models) and estimation methods. In this study, 10 GCMs based on the RCP (Representative Concentration Pathway) 4.5 scenario were used to estimate reference evapotranspiration. 54 ASOS (Automated Synoptic Observing System) data were constructed by statistical downscaling techniques. The meteorological variables of precipitation, maximum temperature and minimum temperature, relative humidity, wind speed, and solar radiation were produced using GCMs. For the past and future periods, we estimated reference evapotranspiration by GCMs and analyzed the statistical characteristics and analyzed its uncertainty. Five methods (BC: Blaney-Criddle, HS: Hargreaves-Samani, MK: Makkink, MS: Matt-Shuttleworth, and PM: Penman-Monteith) were selected to analyze the uncertainty by reference evapotranspiration estimation methods. We compared the uncertainty of reference evapotranspiration method by the variable expansion and analyzed which variables greatly influence reference evapotranspiration estimation. The posterior probabilities of five methods were estimated as BC: 0.1792, HS: 0.1775, MK: 0.2361, MS: 0.2054, and PM: 0.2018. The posterior probability indicated how well reference evapotranspiration estimated with 10 GCMs for five methods reflected the estimated reference evapotranspiration using the observed data. Through this study, we analyzed the overall characteristics of reference evapotranspiration according to GCMs and reference evapotranspiration estimation methods The results of this study might be used as a basic data for preparing the standard method of reference evapotranspiration to derive the water management method under climate change.

Development of Multi-Ensemble GCMs Based Spatio-Temporal Downscaling Scheme for Short-term Prediction (여름강수량의 단기예측을 위한 Multi-Ensemble GCMs 기반 시공간적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1142-1146
    • /
    • 2009
  • A rainfall simulation and forecasting technique that can generate daily rainfall sequences conditional on multi-model ensemble GCMs is developed and applied to data in Korea for the major rainy season. The GCM forecasts are provided by APEC climate center. A Weather State Based Downscaling Model (WSDM) is used to map teleconnections from ocean-atmosphere data or key state variables from numerical integrations of Ocean-Atmosphere General Circulation Models to simulate daily sequences at multiple rain gauges. The method presented is general and is applied to the wet season which is JJA(June-July-August) data in Korea. The sequences of weather states identified by the EM algorithm are shown to correspond to dominant synoptic-scale features of rainfall generating mechanisms. Application of the methodology to seasonal rainfall forecasts using empirical teleconnections and GCM derived climate forecast are discussed.

  • PDF

Difference of Recognition of Subject and Device of Improvement in Security Activity of International Conference between Security Agency and Great-Sphere Self-Governing Body (국제회의 안전활동에 있어서 공안기관과 광역지자체간의 문제인식 차이 및 제고방안 -부산 APEC 행사를 중심으로-)

  • Lee, Sun-Ki
    • Korean Security Journal
    • /
    • no.14
    • /
    • pp.389-412
    • /
    • 2007
  • This study's purpose is to present the improvement of effectiveness of security activity for international conference which can be held hereafter. On the basis of security activity problems originating in APEC that had been held in Pusan in 2005. I made up questions three times to on the members of the police, military, fire figher and Busan city civil servants who had participated in Busan APEC and recognition of possible problem and possibility of improvement on each item of questions was analyzed by Delphi Method. Also interviews with 4 security experts selected from each security agency were conducted to present improvement in each part of problem. The study result is as follows; First, the satisfactory cooperation between security agencies and self-governing body is needed for the basis of security activity in preparatory stage. Second, examining thoroughly security activity by function in activity stage. Third, giving full play to their genius by close cooperation between security agencies and self-governing body in enfourcement stage. Fourth, provision for events after this on the basis of effective estimation system in evaluation stage.

  • PDF

Evolution of Bias-corrected Satellite Rainfall Estimation for Drought Monitoring System in South Korea (한반도지역 가뭄 모니터링 활용을 위한 위성강우 편의보정)

  • Park, Jihoon;Jung, Imgook;Park, Kyungwon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.997-1007
    • /
    • 2018
  • Drought monitoring is the important system for disasters by climate change. To perform this, it is necessary to measure the precipitation based on satellite rainfall estimation. The data developed in this study provides two kinds of satellite data (raw satellite data and bias-corrected satellite data). The spatial resolution of satellite data is 10 km and the temporal resolution is 1 day. South Korea was selected as the target area, and the original satellite data was constructed, and the bias-correction method was validated. The raw satellite data was constructed using TRMM TMPA and GPM IMERG products. The GRA-IDW was selected for bias-correction method. The correlation coefficient of 0.775 between 1998 and 2017 is relatively high, and TRMM TMPA and GPM IMERG 10 km daily rainfall correlation coefficients are 0.776 and 0.753, respectively. The BIAS values were found to overestimate the raw satellite data over observed data. By using the technique developed in this study, it is possible to provide reliable drought monitoring to Korean peninsula watershed. It is also a basic data for overseas projects including the un-gaged regions. It is expected that reliable gridded data for end users of drought management.