• Title/Summary/Keyword: APEC Climate Center

Search Result 122, Processing Time 0.031 seconds

Simulation and analysis of urban inundation using the integrated 1D-2D urban flood model (1D-2D 통합 도시 침수 해석 모형을 이용한 침수 원인 분석에 관한 연구)

  • Lee, Seungsoo;Noh, Seong Jin;Jang, Cheolhee;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.263-275
    • /
    • 2017
  • Integrated numerical approaches with physically-based conceptualization are required for accurate urban inundation simulation. In this study, we described, applied and analyzed an integrated 1-dimensional (1D) sewerage system and 2-dimensional (2D) surface flow model, which was suggested by Lee et al. (2015). This model was developed based on dual-drainage concept, and uses storm drains as an discharge exchange spot rather than manholes so that interaction phenomena between surface flow and sewer pipe flow are physically reproduced. In addition, the building block concept which prevents inflows from outside structures is applied in order to consider building effects. The capability of the model is demonstrated via reproducing the past flooding event at the Sadang-cheon River catchment, Seoul, South Korea. The results show the plausible causes of the inundation could be analysed in detail by integrated 1D-2D modeling.

Preference of undergraduate students after first experience on nickel-titanium endodontic instruments

  • Kwak, Sang Won;Cheung, Gary Shun-Pan;Ha, Jung-Hong;Kim, Sung Kyo;Lee, Hyojin;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.3
    • /
    • pp.176-181
    • /
    • 2016
  • Objectives: This study aimed to compare two nickel-titanium systems (rotary vs. reciprocating) for their acceptance by undergraduate students who experienced nickel-titanium (NiTi) instruments for the first time. Materials and Methods: Eighty-one sophomore dental students were first taught on manual root canal preparation with stainless-steel files. After that, they were instructed on the use of ProTaper Universal system (PTU, Dentsply Maillefer), then the WaveOne (WO, Dentsply Maillefer). They practiced with each system on 2 extracted molars, before using those files to shape the buccal or mesial canals of additional first molars. A questionnaire was completed after using each file system, seeking students' perception about 'Ease of use', 'Flexibility', 'Cutting-efficiency', 'Screwing-effect', 'Feeling-safety', and 'Instrumentation-time' of the NiTi files, relative to stainless-steel instrumentation, on a 5-point Likert-type scale. They were also requested to indicate their preference between the two systems. Data was compared between groups using t-test, and with Chi-square test for correlation of each perception value with the preferred choice (p = 0.05). Results: Among the 81 students, 55 indicated their preferred file system as WO and 22 as PTU. All scores were greater than 4 (better) for both systems, compared with stainless-steel files, except for 'Screwing-effect' for PTU. The scores for WO in the categories of 'Flexibility', 'Screwing-effect', and 'Feeling-safety' were significantly higher scores than those of PTU. A significant association between the 'Screwing-effect' and students' preference for WO was observed. Conclusions: Novice operators preferred nickel-titanium instruments to stainless-steel, and majority of them opted for reciprocating file instead of continuous rotating system.

Calibration of APEX-Paddy Model using Experimental Field Data

  • Mohammad, Kamruzzaman;Hwang, Syewoon;Cho, Jaepil;Choi, Soon-Kun;Park, Chanwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.155-155
    • /
    • 2019
  • The Agricultural Policy/Environmental eXtender (APEX) models have been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. National Academy of Agricultural Sciences, Wanju, Korea, has modified a key component of APEX application, named APEX-Paddy for simulating water quality with considering appropriate paddy management practices, such as puddling and flood irrigation management. Calibration and validation are an anticipated step before any model application. Simple techniques are essential to assess whether or not a parameter should be adjusted for calibration. However, very few study has been done to evaluate the ability of APEX-Paddy to simulate the impact of multiple management scenarios on nutrients loss. In this study, the observation data from experimental fields at Iksan in South Kora was used in calibration and evaluation process during 2013-2015. The APEX auto- calibration tool (APEX-CUTE) was used for model calibration and sensitivity analysis. Four quantitative statistics, the coefficient of determination ($R^2$),Nash-Sutcliffe(NSE),percentbias(PBIAS)androotmeansquareerror(RMSE)were used in model evaluation. In this study, the hydrological process of the modified model, APEX-Paddy, is being calibrated and tested in predicting runoff discharge rate and nutrient yield. Field-scale calibration and validation processes are described with an emphasis on essential calibration parameters and direction regarding logical sequences of calibration steps. This study helps to understand the calibration and validation way is further provided for applications of APEX-Paddy at the field scales.

  • PDF

Evaluating the Spatio-temporal Drought Patterns over Bangladesh using Effective Drought Index (EDI)

  • Kamruzzaman, Md.;Hwang, Syewoon;Cho, Jaepil;Park, Chanwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.158-158
    • /
    • 2018
  • Drought is a recurrent natural hazard in Bangladesh. It has significant impacts on agriculture, environment, and society. Well-timed information on the onset, extent, intensity, duration, and impacts of drought can mitigate the potential drought-related losses. Thus, drought characteristics need to be explained in terms of frequency, severity, and duration. This paper aims to characterize the spatial and temporal pattern of meteorological drought using EDI and illustrated drought severity over Bangladesh. Twenty-seven (27) station-based daily rainfall data for the study period of 1981-2015 were used to calculate the EDI values over Bangladesh. The evaluation of EDI is conducted for 4 sub-regions over the country to confirm the historical drought record-developed at the regional scale. The finding shows that on average, the frequency of severe to extreme drought is approximately 0.7 events per year. As a result of the regional analysis, most of the recorded historical drought events were successfully detected during the study period. Additionally, the seasonal analysis showed that the extreme droughts were frequently hit in northwestern, middle portion of the eastern and small portion of central parts of Bangladesh during the Kharif(wet) and Rabi(dry) seasons. The severe drought was affected recurrently in the central and northern regions of the country during all cropping seasons. The study also points out that the northern, south-western and central regions in Bangladesh are comparatively vulnerable to both extreme and severe drought event. The study showed that EDI would be a useful tool to identify the drought-prone area and time and potentially applicable to the climate change-induced drought evolution monitoring at regional to the national level in Bangladesh. The outcome of the present study can be used in taking anticipatory strategies to mitigate the drought damages on agricultural production as well as human sufferings in drought-prone areas of Bangladesh.

  • PDF

Influence of Rainfall observation Network on Daily Dam Inflow using Artificial Neural Networks (강우자료 형태에 따른 인공신경망의 일유입량 예측 정확도 평가)

  • Kim, Seokhyeon;Kim, Kyeung;Hwang, Soonho;Park, Jihoon;Lee, Jaenam;Kang, Moonseong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.63-74
    • /
    • 2019
  • The objective of this study was to evaluate the influence of rainfall observation network on daily dam inflow using artificial neural networks(ANNs). Chungju Dam and Soyangriver Dam were selected for the study watershed. Rainfall and dam inflow data were collected as input data for construction of ANNs models. Five ANNs models, represented by Model 1 (In watershed, point rainfall), Model 2 (All in the Thiessen network, point rainfall), Model 3 (Out of watershed in the Thiessen network, point rainfall), Model 1-T (In watershed, area mean rainfall), Model 2-T (All in the Thiessen network, area mean rainfall), were adopted to evaluate the influence of rainfall observation network. As a result of the study, the models that used all station in the Thiessen network performed better than the models that used station only in the watershed or out of the watershed. The models that used point rainfall data performed better than the models that used area mean rainfall. Model 2 achieved the highest level of performance. The model performance for the ANNs model 2 in Chungju dam resulted in the $R^2$ value of 0.94, NSE of 0.94 $NSE_{ln}$ of 0.88 and PBIAS of -0.04 respectively. The model-2 predictions of Soyangriver Dam with the $R^2$ and NSE values greater than 0.94 were reasonably well agreed with the observations. The results of this study are expected to be used as a reference for rainfall data utilization in forecasting dam inflow using artificial neural networks.

Accuracy Assessment of Precipitation Products from GPM IMERG and CAPPI Ground Radar over South Korea

  • Imgook Jung;Sungwon Choi;Daeseong Jung;Jongho Woo;Suyoung Sim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.269-274
    • /
    • 2024
  • High-quality precipitation data are crucial for various industries, including disaster prevention. In South Korea, long-term high-quality data are collected through numerous ground observation stations. However, data between these stations are reprocessed into a grid format using interpolation methods, which may not perfectly match actual precipitation. A prime example of real-time observational grid data globally is the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM IMERG) from National Aeronautics and Space Administration (NASA), while in South Korea, ground radar data are more commonly used. GPM and ground radar data exhibit distinct differences due to their respective processing methods. This study aims to analyze the characteristics of GPM and Constant Altitude Plan Position Indicator(CAPPI),representative real-time grid data, by comparing them with ground-observed precipitation data. The study period spans from 2021 to 2022, focusing on hourly data from Automated Synoptic Observing System (ASOS) sites in South Korea. The GPM data tend to underestimate precipitation compared to ASOS data, while CAPPI shows errors in estimating low precipitation amounts. Through this comparative analysis, the study anticipates identifying key considerations for utilizing these data in various applied fields, such as recalculating design rainfall, thereby aiding researchers in improving prediction accuracy by using appropriate data.

Development of Stochastic Downscaling Method for Rainfall Data Using GCM (GCM Ensemble을 활용한 추계학적 강우자료 상세화 기법 개발)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Lee, Dong-Ryul;Yoon, Sun-Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.825-838
    • /
    • 2014
  • The stationary Markov chain model has been widely used as a daily rainfall simulation model. A main assumption of the stationary Markov model is that statistical characteristics do not change over time and do not have any trends. In other words, the stationary Markov chain model for daily rainfall simulation essentially can not incorporate any changes in mean or variance into the model. Here we develop a Non-stationary hidden Markov chain model (NHMM) based stochastic downscaling scheme for simulating the daily rainfall sequences, using general circulation models (GCMs) as inputs. It has been acknowledged that GCMs perform well with respect to annual and seasonal variation at large spatial scale and they stand as one of the primary sources for obtaining forecasts. The proposed model is applied to daily rainfall series at three stations in Nakdong watershed. The model showed a better performance in reproducing most of the statistics associated with daily and seasonal rainfall. In particular, the proposed model provided a significant improvement in reproducing the extremes. It was confirmed that the proposed model could be used as a downscaling model for the purpose of generating plausible daily rainfall scenarios if elaborate GCM forecasts can used as a predictor. Also, the proposed NHMM model can be applied to climate change studies if GCM based climate change scenarios are used as inputs.

Assessing Applicability of SWAT Calibrated at Multiple Spatial Scales from Field to Stream (다단계 수문과정을 고려하여 보정된 SWAT모형의 적용성 검토)

  • Cho, Jaepil;Her, Younggu;Bosch, David
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.21-39
    • /
    • 2015
  • 유역 내부의 수문과정에 대한 관측치를 이용한 모형의 보정은 분산형 수문수질 모형의 적용성을 높이는 방법으로 권장되지만, 관측치가 충분하지 않은 경우가 많아 적용사례가 드문 실정이다. 본 연구는 경지에서 유역의 출구까지 여러 단계의 수문과정을 고려하여 분산형 수문수질모형을 보정하는 방법을 제시하고, 이와 같은 방법으로 보정된 모형의 적용성을 검토하고자 하였다. 이를 위해 본 연구는 SWAT 모형을 이용하여 미국 조지아의 South Atlantic Coastal Plain에 있는 한 농업유역의 수문과정을 모의하였다. 또한, 유사와 영양물질의 구체적인 하천운송과정을 모의하기 위해 SWAT모형의 QUAL2E 모듈을 이용하였다. 모형보정은 유역의 유출량 및 유사와 영양물질의 양 뿐만 아니라 경지에서 관측된 바이오매스, 토양 침식량 및 영양물질 발생량, 수변지역 (riparian buffer)에서 발생하는 유사와 영양물질 감소, 하천운송과정 등을 고려하여 수행되었다. 모형의 보정 및 검증기간은 자료기간과 토양보전농법의 시행기간을 고려하여 선정되었으며, 보정된 모형의 적용성은 복수의 통계치 (NSE, RE, RSR 등)를 이용하여 분석되었다. 보정된 모형은 유역의 출구에서 하천유량과 총질소량을 각각 NSE 0.93 및 0.59의 정확도로 모의하였다. 그러나 유사 (NSE: 0.40)와 총인량 (NSE: 0.45)모의에서는 상대적으로 낮은 정확도를 보였다. SWAT의 QUAL2E 모듈을 이용하여 하천에서의 유사 및 영양물질 운송과정을 고려하는 것은 총인과 총질소 모의결과의 정확도를 향상시킬 수 있는 것으로 나타났다. 본 연구에서 다단계 수문과정을 고려하여 보정된 SWAT모형은 유역 내부에서 발생하는 수문과정을 모의하는데 적용성이 있는 것으로 나타났다. 하지만, 계측방법 및 계측된 자료의 분석방법의 변화에 따른 오차와 토지이용의 시공간적 변화를 모의에서 고려하지 못해서 발생한 오차를 감안하더라도, 보정된 모형은 유역출구에서 관측되는 유사와 영양물질 양을 정확하게 모의하는데 실패 (NSE < 0.5)하였다고 평가할 수 있으며, 이는 SWAT 모형의 보정에서 다단계 또는 유역내부의 수문과정을 고려하는 것이 유역출구에서 높은 모의 정확도를 얻는데 기여하지 못할 수도 있음을 보여주었다.

Responses of Soybean Yield to High Temperature Stress during Growing Season: A Case Study of the Korean Soybean (재배기간 동안 이상고온 발생에 따른 콩의 수량반응 탐색)

  • Chung, Uran;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Seo, Myung-Chul;Jung, Woo-Seuk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.188-198
    • /
    • 2016
  • In soybeans, responses of high temperature according to shift of sowing dates during the growing season was explored using the crop model, CROPGRO-soybean. In addition, it analyzed impact on change of sowing dates affects yield potential of soybean under future climate scenario (2041-2070). In Jeonju and Miryang during 1981-2010, if sowing at 15 or ten days ahead from 10 June, namely in shorten of the sowing day (i.e. when sown on 25 or 30 May), the yield potential reduced. However, the yield potential increased when sown 5 June. In the case of delay of sowing day (i.e. when sown on 15 or 20 June), reduction of yield potential in the average -5% was higher than increase in the average +2%. In particular, the relative changes for shorten of the sowing day or delay of the sowing day do not be shown in normal years which high temperatures did not abnormally occur during the growing season from 2003 to 2010 except when sown on 25 May. In abnormal years which high temperatures occurred during the critical period, especially R5 to R7, shorten of the sowing day affected to the increase of yield potential in Miryang, while the yield potential decreased in Jeonju except when sown on 5 June. However, delay of the sowing day influenced on the reduction of yield potential both in two sites. In future climate scenario of Representative Concentration Pathway (RCP) 8.5 during from 2041 to 2070, the increase and decrease of yield potential for shorten of the sowing day were +10/-9% for RCP 8.5 of Jeonju, and +14/-9% for RCP 8.5 of Miryang, respectively. Additionally, it showed +10/-17% for RCP 8.5 in Jeonju, and +10/-29% for RCP 8.5 in Miryang, respectively in the increase and decrease of yield potential for delay of the sowing day.

Comparison of Sediment Disaster Risk Depending on Bedrock using LSMAP (LSMAP을 활용한 기반암별 토사재해 위험도 비교)

  • Choi, Won-il;Choi, Eun-hwa;Jeon, Seong-kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • For the purpose of the study, of the 76 areas subject to preliminary concentrated management on sediment disaster in the downtown area, 9 areas were selected as research areas. They were classified into three stratified rock areas (Gyeongsan City, Goheung-gun and Daegu Metropolitan City), three igneous rock areas (Daejeon City, Sejong Special Self-Governing City and Wonju City) and three metamorphic rock areas (Namyangju City, Uiwang City and Inje District) according to the characteristics of the bedrock in the research areas. As for the 9 areas, analyses were conducted based on tests required to calculate soil characteristics, a predictive model for root adhesive power, loading of trees and on-the-spot research. As for a rainfall scenario (rainfall intensity), the probability of rainfall was applied as offered by APEC Climate Center (APCC) in Busan. As for the prediction of landslide risks in the 9 areas, TRIGRS and LSMAP were applied. As a result of TRIGRIS prediction, the risk rate was recorded 30.45% in stratified rock areas, 41.03% in igneous rock areas and 45.04% in metamorphic rock areas on average. As a result of LSMAP prediction based on root cohesion and the weight of trees according to crown density, it turned out to a 1.34% risk rate in the stratified rock areas, 2.76% in the igneous rock areas and 1.64% in the metamorphic rock areas. Analysis through LSMAP was considered to be relatively local predictive rather than analysis using TRIGRS.