DOI QR코드

DOI QR Code

Responses of Soybean Yield to High Temperature Stress during Growing Season: A Case Study of the Korean Soybean

재배기간 동안 이상고온 발생에 따른 콩의 수량반응 탐색

  • Chung, Uran (Climate Application Department, Climate Application Team, APEC Climate Center) ;
  • Cho, Hyeoun-Suk (Climate Change Assessment Research Lab., National Institute of Crop Science, RDA) ;
  • Kim, Jun-Hwan (Climate Change Assessment Research Lab., National Institute of Crop Science, RDA) ;
  • Sang, Wan-Gyu (Climate Change Assessment Research Lab., National Institute of Crop Science, RDA) ;
  • Shin, Pyeong (Climate Change Assessment Research Lab., National Institute of Crop Science, RDA) ;
  • Seo, Myung-Chul (Climate Change Assessment Research Lab., National Institute of Crop Science, RDA) ;
  • Jung, Woo-Seuk (Department of Applied Bioscience, College of Life & Environmental Sciences, Konkuk University)
  • 정유란 (APEC 기후센터, 응용사업부, 응용사업팀) ;
  • 조현숙 (농촌진흥청 국립식량과학원, 작물재배생리과 기후변화대응연구실) ;
  • 김준환 (농촌진흥청 국립식량과학원, 작물재배생리과 기후변화대응연구실) ;
  • 상완규 (농촌진흥청 국립식량과학원, 작물재배생리과 기후변화대응연구실) ;
  • 신평 (농촌진흥청 국립식량과학원, 작물재배생리과 기후변화대응연구실) ;
  • 서명철 (농촌진흥청 국립식량과학원, 작물재배생리과 기후변화대응연구실) ;
  • 정우석 (건국대학교, 생명환경과학대학 응용생물과학과)
  • Received : 2016.10.19
  • Accepted : 2016.11.17
  • Published : 2016.12.30

Abstract

In soybeans, responses of high temperature according to shift of sowing dates during the growing season was explored using the crop model, CROPGRO-soybean. In addition, it analyzed impact on change of sowing dates affects yield potential of soybean under future climate scenario (2041-2070). In Jeonju and Miryang during 1981-2010, if sowing at 15 or ten days ahead from 10 June, namely in shorten of the sowing day (i.e. when sown on 25 or 30 May), the yield potential reduced. However, the yield potential increased when sown 5 June. In the case of delay of sowing day (i.e. when sown on 15 or 20 June), reduction of yield potential in the average -5% was higher than increase in the average +2%. In particular, the relative changes for shorten of the sowing day or delay of the sowing day do not be shown in normal years which high temperatures did not abnormally occur during the growing season from 2003 to 2010 except when sown on 25 May. In abnormal years which high temperatures occurred during the critical period, especially R5 to R7, shorten of the sowing day affected to the increase of yield potential in Miryang, while the yield potential decreased in Jeonju except when sown on 5 June. However, delay of the sowing day influenced on the reduction of yield potential both in two sites. In future climate scenario of Representative Concentration Pathway (RCP) 8.5 during from 2041 to 2070, the increase and decrease of yield potential for shorten of the sowing day were +10/-9% for RCP 8.5 of Jeonju, and +14/-9% for RCP 8.5 of Miryang, respectively. Additionally, it showed +10/-17% for RCP 8.5 in Jeonju, and +10/-29% for RCP 8.5 in Miryang, respectively in the increase and decrease of yield potential for delay of the sowing day.

본 연구는 콩 생육모형을 활용하여 우리나라에서 콩 재배기간 동안 발생할 수 있는 이상고온에서 파종일 이동에 따른 콩의 수량반응과 그 영향을 탐색하였다. 또한 미래 기후변화 시나리오(2041-2070년)에서도 파종일 이동이 잠재수량(yield potential)의 변화에 미칠 수 있는 영향을 분석하였다. 1981-2010년 동안 전주와 밀양 두 지점에서, 6월 10일의 파종일을 기준으로 5월 25일과 30일의 파종일 단축에 의한 상대적 잠재수량의 변화는 증가보다는 감소 경향으로 나타난 반면, 6월 5일의 파종일 단축에 의한 잠재수량은 증가(평균 +3%)하는 것으로 나타났다. 그러나, 6월 15일과 20일의 파종일 지연에 의한 잠재수량의 감소(평균 -5%)가 증가(평균 +2%)보다 큰 것으로 나타났다. 또한 두 지점의 최근 2003년부터 2010년 동안 정상온도의 해에서, 6월 10일의 파종일을 기준으로 전주의 5월 25일을 제외하고 파종일 이동에 의한 상대적 잠재수량의 변화에 큰 차이가 나타나지 않았다. 그러나 이상 고온의 해에서, 밀양의 경우 파종일 단축에 의한 상대적 잠재수량이 모두 증가하였지만 전주는 6월 5일의 파종일 단축을 제외하고 파종일 단축에서도 상대적 잠재수량의 감소가 나타났다. 파종일 지연에서는 두 지점 모두에서 상대적 잠재수량이 감소하는 것으로 나타났다. 두 지점에서 2041-2070년의 미래 기후변화 시나리오 전망에서 파종일 단축에 따른 잠재수량의 증감효과는 RCP 4.5에서 +7%/-13%(전주)와 +14%/-10%(밀양)로 나타났고, RCP 8.5에서 +10%/-9%(전주)와 +14%/-9%(밀양)로 나타났다. 또한 파종일 지연에 따른 잠재수량의 증감효과는 RCP 4.5에서 +5%/-13%(전주)와 +11%/-16%(밀양)로 나타났고, RCP 8.5에서는 +10%/-17%(전주)와 +10%/-29%(밀양)로 나타났다. 절대적인 값의 차이는 작지만 상대적 잠재수량의 변화에서 파종일 이동에 의한 영향이 RCP 8.5에서 더 반영된 것으로 판단된다.

Keywords

References

  1. Bassu, S., N. Brisson, J.-L. Durand, K. Boote, J. Lizaso, J. W. Jones, C. Rosenzweig, A. C. Ruane, M. Adam, C. Baron, B. Basso, C. Biernath, H. Boogaard, S. Conijn, M. Corbeels, D. Deryng, G. De Sanctis, S. Gayler, P. Grassini, J. Hatfield, S. Hoek, C. Izaurralde, R. Jongschaap, A. R. Kemanian, K. C. Kersebaum, S.-H. Kim, N. S. Kumar, D. Makowski, C. Muller, C. Nendel, E. Priesack, M. V. Pravia, F. Sau, I. Shcherbak, F. Tao, E. Teixeira, D. Timlin, and K. Waha, 2014: How do various maize crop models vary in their responses to climate change factors? Global Change Biology 20(7), 2301-2320. https://doi.org/10.1111/gcb.12520
  2. Boote, K. J., J. W. Jones, G. Hoogenboom, G. G. Wilkerson, and S. S. S. Jagtap, 1989: PNUTGRO V1.02: Peanut crop growth simulation model: User's Guide. Florida Agricultural Experiment Station Journal No. 8420. University of Florida, Gainesville, FL. 76 pp.
  3. Chung, U., K. S. Cho, and B. W. Lee, 2006: Evaluation of site-specific potential for rice production in Korea under the changing climate. Korean Journal of Agricultural and Forest Meteorology 8(4), 229-241.
  4. Chung, 2015: Improvement of agricultural assessment of impact on climate change using downscaled climate prediction. APEC Climate Center, Report 2015-18, 94 pp.
  5. FAOSTAT, 2012: Agriculture organization of the United Nations. Statistical database.
  6. Hoogenboom, G., J. W. Jones, P. W. Wilkens, C. H. Porter, K. J. Boote, L. A. Hunt, U. Singh, J. L. Lizaso, J. W. White, O. Uryasev, F. S. Royce, R. Ogoshi, A. J. Gijsman, G. Y. Tsuji, and J. Koo, 2010: Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 [CDROM], University of Hawaii, Honolulu.
  7. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: DSSAT Cropping System Model. European Journal of Agronomy 18(3-4), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  8. Kim, S. K., J. S. Park, Y. S. Lee, H. C. Seo, K. S., Kim, and J. I. Yun, 2004: Development and use of digital climate models in Northern Gyunggi Province - II. Site-specific performance evaluation of soybean cultivars by DCM-based growth simulation. Korean Journal of Agricultural and Forest Meteorology 6(1), 61-69.
  9. Kim, D. J., S. O. Kim, K. H. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP8.5 climate condition. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. https://doi.org/10.5532/KJAFM.2012.14.3.132
  10. Kim, S. D., E. H. Hong, Y. H. Lee, Y. H. Hwang, Y. H. Moon, H. S. Kim, E. H. Park, Y. G. Seong, Y. H. Kim, W. H. Kim, Y. H. Ryu, and R. K. Park, 1992: Resistant to disease, good in seed quality, high yielding and widely adapted new soybean variety "Taekwangkong". Research Report of RDA (U & I) 32, 11-15.
  11. Lee, E. S., and S. T. Yoon, 2008: Cultivation conditions and yield characteristics of soybean in Northern Gyeonggi region. Korean Journal of International Agriculture 20, 85-93.
  12. Lee, C. K., B. W. Lee, Y. H. Yoon, and J. C. Shin, 2001: Temperature response and prediction model of leaf appearance rate in rice. Korean Journal of Crop Science 46, 202-208.
  13. Lee, C. K., K. S. Kwak, J. H. Kim, J. Y. Son, and W. H. Yang, 2011: Impacts of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean Journal of Crop Science 56(3), 233-243. https://doi.org/10.7740/kjcs.2011.56.3.233
  14. Lee, K. J., D. N. Nguyen, D. H. Choi, H. Y. Ban, and B. W. Lee, 2015: Effects of elevated air temperature on yield and yield components of rice. Korean Journal of Agricultural and Forest Meteorology 17(2), 156-164. https://doi.org/10.5532/KJAFM.2015.17.2.156
  15. Liu, B., S. Asseng, L. Liu, L. Tang, W. Cao, and Y. Zhu, 2016: Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology 22(5), 1890-1903. https://doi.org/10.1111/gcb.13212
  16. Lobell, D. B., G. L. Hammer, G. McLean, C. Messina, M. J. Roberts, and W. Schlenker, 2013: The critical role of extreme heat for maize production in the United States. Nature Climate Change 3, 497-501. https://doi.org/10.1038/nclimate1832
  17. Marioano, A., P. Martre, S. Asseng, F. Ewert, C. Muller, Others, 2016: Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Resource (In press).
  18. NICS, 2014: Development of Crop Yield Monitoring System Using Crop Growth Simulation Models in Major Food Crops, pp.142.
  19. Paola, A. D., R. Valentini, and M. Santini, 2015: An overview of available crop growth and yield models for studies and assessments in agriculture. Journal of the Science of Food and Agriculture 96(3), 709-714. https://doi.org/10.1002/jsfa.7359
  20. Park, H. J., W. Y. Han, K. W. Oh, H. T. Kim, S. O. Shin, B. W. Lee, J. M. Ko, and I. Y. Baek, 2014: Growth and yield components responses to delayed planting of soybean in Southern region of Korea. Korean Journal of Crop Science 59(4), 483-491. https://doi.org/10.7740/kjcs.2014.59.4.483
  21. Song, E. Y., K. H. Moon, I. C. Son, C. H. Kim, C. K. Lim, D. Son, and S. Oh., 2014: Impact of elevated temperature in growing season on growth and fruit quality of red pepper (Capsicum annuum L.). Korean Journal of Agricultural and Forest Meteorology 16(4), 349-358 https://doi.org/10.5532/KJAFM.2014.16.4.349