• Title/Summary/Keyword: APEC

Search Result 324, Processing Time 0.031 seconds

Quantification and propagation of climatic and human impacts on streamflow (하천에서의 기후변화와 인간 활동 영향의 수치화 및 전달 분석)

  • Lee, Dongjun;Shin, Youngchul;Lim, Kyoung Jae;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.148-148
    • /
    • 2015
  • 기후와 인간 활동의 변화는 하천의 유량을 변화시키는 중요한 요소들 중 하나이다. 하천관리를 위해서는 이 요소들의 긍정적인 영향과 부정적인 영향이 하천에 얼마나 많은 영향을 끼치고 있는지 수치화하여 관리해야한다. 또한 상류에서의 기후와 인간 활동에 의해 변화된 유량은 하천 하류까지 전달되어 적지 않는 영향을 미치고 있다. 효과적인 하천관리를 위해서는 유역 내 기후와 인간 활동에 의해 변화된 유량과 하류하천에 미치는 영향을 정량화하여야 한다. 본 연구에서는 하천에서 기후와 인간 활동에 의한 유량 변화를 정량화 하고 그 요소들이 상류에서 하류에 얼마나 많이 전달이 되는지 분석하였다. 본 연구 결과 수리구조물이 설치되어 있는 하천에서는 인간 활동에 의한 유량변화량이 크게 나타났다. 상류의 수리구조물에 의한 영향은 하천 하류에도 크게 전달되는 것으로 분석되었다. 또한 기후적인 요인에 의해 유량의 변화가 큰 지역은 그 외 지역보다 자연 재해에 의한 피해 위험도가 높다고 판단된다. 본 연구의 결과는 미래의 효과적인 수자원관리를 결정하는데 중요한 정보를 제공해줄 수 있을 것이라 기대된다.

  • PDF

Generation of high-resolution gridded climate variables using modified PRISM over South Korea (수정 PRISM을 활용한 남한지역의 고해상도 격자 기후자료 생성)

  • Eum, Hyung-Il;Kim, Jong Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.10-13
    • /
    • 2015
  • 본 연구에서는 관측지점의 공간분포에 따라 영향반경을 결정하는 M-PRISM(Modified PRISM)을 이용하여 고해상도의 장기 격자자료를 생성하고자 하였다. 장기 기상관측자료를 제공하는 국내 60개 종관기상관측점의 자료를 기반으로 $5km{\times}5km$ 해상도의 일강수량, 일최고 및 일최저기온 등의 자료를 생성하였고 정량적 평가지표를 산정하여 평가하였다. 이와 더불어 일강수량에 대해서는 강수발생빈도를 추정할 수 있는 정성적 평가지표를 산정하고 기존 PRISM과 비교하였다. 정량적 평기지표에서는 두 모형 사이에 뚜렷한 차이를 보이지 않았지만 정성적 평가지표에서는 M-PRISM이 우수한 결과를 나타내었다. 특히 강수 공간분포의 변동성이 큰 호우사상의 경우 M-PRISM이 효용성이 더욱 크게 나타남을 확인할 수 있었다.

  • PDF

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

Preliminary Result of Uncertainty on Variation of Flowering Date of Kiwifruit: Case Study of Kiwifruit Growing Area of Jeonlanam-do (기후변화에 따른 국내 키위 품종 '해금'의 개화시기 변동과 전망에 대한 불확실성: 전남 키위 주산지역을 중심으로)

  • Kim, Kwang-Hyung;Jeong, Yeo Min;Cho, Youn-Sup;Chung, Uran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.42-54
    • /
    • 2016
  • It is highly anticipated that warming temperature resulting from global climate change will affect the phenological pattern of kiwifruit, which has been commercially grown in Korea since the early 1980s. Here, we present the potential impacts of climate change on the variations of flowering day of a gold kiwifruit cultivar, Haegeum, in the Jeonnam Province, Korea. By running six global climate models (GCM), the results from this study emphasize the uncertainty in climate change scenarios. To predict the flowering day of kiwifruit, we obtained three parameters of the 'Chill-day' model for the simulation of Haegeum: $6.3^{\circ}C$ for the base temperature (Tb), 102.5 for chill requirement (Rc), and 575 for heat requirement (Rh). Two separate validations of the resulting 'Chill-day' model were conducted. First, direct comparisons were made between the observed flowering days collected from 25 kiwifruit orchards for two years (2014-15) and the simulated flowering days from the 'Chill-day' model using weather data from four weather stations near the 25 orchards. The estimation error between the observed and simulated flowering days was 5.2 days. Second, the model was simulated using temperature data extracted, for the 25 orchards, from a high-resolution digital temperature map, resulting in the error of 3.4 days. Using the RCP 4.5 and 8.5 climate change scenarios from six GCMs for the period of 2021-40, the future flowering days were simulated with the 'Chill-day' model. The predicted flowering days of Haegeum in Jeonnam were advanced more than 10 days compared to the present ones from multi-model ensemble, while some individual models resulted in quite different magnitudes of impacts, indicating the multi-model ensemble accounts for uncertainty better than individual climate models. In addition, the current flowering period of Haegeum in Jeonnam Province was predicted to expand northward, reaching over Jeonbuk and Chungnam Provinces. This preliminary result will provide a basis for the local impact assessment of climate change as more phenology models are developed for other fruit trees.

Forecasting Brown Planthopper Infestation in Korea using Statistical Models based on Climatic tele-connections (기후 원격상관 기반 통계모형을 활용한 국내 벼멸구 발생 예측)

  • Kim, Kwang-Hyung;Cho, Jeapil;Lee, Yong-Hwan
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • A seasonal outlook for crop insect pests is most valuable when it provides accurate information for timely management decisions. In this study, we investigated probable tele-connections between climatic phenomena and pest infestations in Korea using a statistical method. A rice insect pest, brown planthopper (BPH), was selected because of its migration characteristics, which fits well with the concept of our statistical modelling - utilizing a long-term, multi-regional influence of selected climatic phenomena to predict a dominant biological event at certain time and place. Variables of the seasonal climate forecast from 10 climate models were used as a predictor, and annual infestation area for BPH as a predictand in the statistical analyses. The Moving Window Regression model showed high correlation between the national infestation trends of BPH in South Korea and selected tempo-spatial climatic variables along with its sequential migration path. Overall, the statistical models developed in this study showed a promising predictability for BPH infestation in Korea, although the dynamical relationships between the infestation and selected climatic phenomena need to be further elucidated.

Comparison of Sediment Disaster Risk Depending on Bedrock using LSMAP (LSMAP을 활용한 기반암별 토사재해 위험도 비교)

  • Choi, Won-il;Choi, Eun-hwa;Jeon, Seong-kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • For the purpose of the study, of the 76 areas subject to preliminary concentrated management on sediment disaster in the downtown area, 9 areas were selected as research areas. They were classified into three stratified rock areas (Gyeongsan City, Goheung-gun and Daegu Metropolitan City), three igneous rock areas (Daejeon City, Sejong Special Self-Governing City and Wonju City) and three metamorphic rock areas (Namyangju City, Uiwang City and Inje District) according to the characteristics of the bedrock in the research areas. As for the 9 areas, analyses were conducted based on tests required to calculate soil characteristics, a predictive model for root adhesive power, loading of trees and on-the-spot research. As for a rainfall scenario (rainfall intensity), the probability of rainfall was applied as offered by APEC Climate Center (APCC) in Busan. As for the prediction of landslide risks in the 9 areas, TRIGRS and LSMAP were applied. As a result of TRIGRIS prediction, the risk rate was recorded 30.45% in stratified rock areas, 41.03% in igneous rock areas and 45.04% in metamorphic rock areas on average. As a result of LSMAP prediction based on root cohesion and the weight of trees according to crown density, it turned out to a 1.34% risk rate in the stratified rock areas, 2.76% in the igneous rock areas and 1.64% in the metamorphic rock areas. Analysis through LSMAP was considered to be relatively local predictive rather than analysis using TRIGRS.

A Review on the Critical Issues for Global Electronic Commerce (전자상거래 확산을 위한 주요 이슈에 대한 연구)

  • Kim, Chung-Young;Cho, Nahm-Jae;Kim, Jeong-Deok
    • Korean Business Review
    • /
    • v.12
    • /
    • pp.255-274
    • /
    • 1999
  • Electronic Commerce (EC) is a relatively new and has been attracting a considerable amount of attention. Even though it is still in an introductory stage, growth rates are impressively high and its economic importance will continue to grow. Electronic Commerce is born to be global because its connectivity using the Internet is universal. As Electronic Commerce accelerates the globalization, it will also increase both the interdependence of national economies in different countries and the need for international cooperation and coordination. Electronic Commerce is really a global challenge that requires global solutions. For this reason, Electronic Commerce becomes an important agenda in major international cooperative organizations including APEC, OECD, and G7 (G8). However, current international discussions on Global Electronic Commerce are initiated mostly by the United States and European Union (EU). The objective of this paper is to raise awareness creation activities in which the international cooperation is needed for promoting the global electronic marketplace in Asia. For this purpose, this paper reviews the approaches of U.S. and European countries (or European Union), and suggests an development framework on the basis of the reviews. The framework is used to analyze current issues around Electronic Commerce, and identify some fields which require coherent work among researchers in different countries.

  • PDF

Non-Parametric Low-Flow Frequency Analysis Using RCPs Scenario Data : A Case Study of the Gwangdong Storage Reservoir, Korea (RCPs 시나리오 자료를 이용한 비매개변수적 갈수빈도 해석: 광동댐 유역을 중심으로)

  • Yoon, Sun Kwon;Cho, Jae Pil;Moon, Young Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1125-1138
    • /
    • 2014
  • In this study, we applied an advanced non-parametric low-flow frequency analysis using boundary kernel by Representative Concentration Pathways (RCPs) climate change scenarios through Arc-SWAT long-term runoff model simulation at the Gwangdong storage reservoir located in Taeback, Gangwondo. The results show that drought frequency under RCPs was expected to increase due to reduced runoff during the near future, and the variation of low-flow time series was appeared greatly under RCP8.5 scenario, respectively. The result from drought frequency of Median flow in the near future (2030s) compared historic period, the case of 30-year low-flow frequency was increased (the RCP4.5 shows +22.4% and the RCP8.5 shows +40.4%), but in the distant future (2080s) expected increase of drought frequency due to the reduction of low-flow (under RCP4.5: -4.7% and RCP8.5: -52.9%), respectively. In case of Quantile 25% flow time series data also expected that the severe drought frequency will be increased in the distant future by reducing low-flow (the RCP4.5 shows -20.8% to -60.0% and the RCP8.5 shows -30.4% to -96.0%). This non-parametric low-flow frequency analysis results according to the RCPs scenarios have expected to consider to take advantage of as a basis data for water resources management and countermeasures of climate change in the mid-watershed over the Korean Peninsula.

One-month lead dam inflow forecast using climate indices based on tele-connection (원격상관 기후지수를 활용한 1개월 선행 댐유입량 예측)

  • Cho, Jaepil;Jung, Il Won;Kim, Chul Gyium;Kim, Tae Guk
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.361-372
    • /
    • 2016
  • Reliable long-term dam inflow prediction is necessary for efficient multi-purpose dam operation in changing climate. Since 2000s the teleconnection between global climate indices (e.g., ENSO) and local hydroclimate regimes have been widely recognized throughout the world. To date many hydrologists focus on predicting future hydrologic conditions using lag teleconnection between streamflow and climate indices. This study investigated the utility of teleconneciton for predicting dam inflow with 1-month lead time at Andong dam basin. To this end 40 global climate indices from NOAA were employed to identify potential predictors of dam inflow, areal averaged precipitation, temperature of Andong dam basin. This study compared three different approaches; 1) dam inflow prediction using SWAT model based on teleconneciton-based precipitation and temperature forecast (SWAT-Forecasted), 2) dam inflow prediction using teleconneciton between dam inflow and climate indices (CIR-Forecasted), and 3) dam inflow prediction based on the rank of current observation in the historical dam inflow (Rank-Observed). Our results demonstrated that CIR-Forecasted showed better predictability than the other approaches, except in December. This is because uncertainties attributed to temporal downscaling from monthly to daily for precipitation and temperature forecasts and hydrologic modeling using SWAT can be ignored from dam inflow forecast through CIR-Forecasted approach. This study indicates that 1-month lead dam inflow forecast based on teleconneciton could provide useful information on Andong dam operation.

Agrometeorological Analysis on the Freeze Damage Occurrence of Yuzu Trees in Goheung, Jeonnam Province in 2018 (2018년 전라남도 고흥 유자나무 동해 발생에 대한 기상학적 구명)

  • Kim, Gyoung Hee;Koh, Young Jin;Kim, Kwang-Hyung
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.71-78
    • /
    • 2019
  • In 2018, severe diebacks have occurred on yuzu trees cultivated in Goheung, Jeonnam Province. On-farm surveys at 18 randomly selected orchards revealed the dieback incidence ranged from 7.5% to 100% with an average of 43.6%, and 56.6% of the affected yuzu trees were eventually killed. In order to find the reason for this sudden epidemic, we investigated the weather conditions that are exclusively distinct from previous years, hypothesizing that certain weather extremes might have caused the dieback epidemic on yuzu trees. Since different temperatures can cause freeze damage to plants depending on their dormancy stages, we investigated both periods when yuzu becomes hardy under deep dormancy (January-February) and when yuzu loses its cold hardiness (March-April). First, we found that daily minimum air temperatures below $-10^{\circ}C$ were recorded for 7 days in Goheung for January and February in 2018, while no occasions in 2017. In particular, there were two extreme temperature drops ($-12.6^{\circ}C$ and $-11.5^{\circ}C$) beyond the yuzu cold hardiness limit in 2018. In addition, another occasion of two sudden temperature drops to nearly $0^{\circ}C$ were occurred right after abnormally-warm-temperature-rises to $13^{\circ}C$ of daily minimum air temperatures in mid-March and early April. In conclusion, we estimated that the possible damages by several extreme freeze events during the winter of 2018 could be a major cause of severe diebacks and subsequently killed the severely affected yuzu trees.