• 제목/요약/키워드: AP-$2{\gamma}$

검색결과 44건 처리시간 0.029초

miR-200a Inhibits Tumor Proliferation by Targeting AP-2γ in Neuroblastoma Cells

  • Gao, Shun-Li;Wang, Li-Zhong;Liu, Hai-Ying;Liu, Dan-Li;Xie, Li-Ming;Zhang, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4671-4676
    • /
    • 2014
  • Background: MicroRNA-200a (miR-200a) has been reported to regulate tumour progression in several tumours but little is known about its role in neuroblastoma. Our aim was to investigate the potential role and mechanism of miR-200a in neuroblastomas. Materials and Methods: Expression levels of miR-200a in tissues were determined using RT-PCR. The effect of miR-200a and shAP-$2{\gamma}$ on cell viability was evaluated using MTS assays, and target protein expression was determined using Western blotting and RT-PCR. Luciferase reporter plasmids were constructed to confirm direct targeting. Results were reported as mean${\pm}$S.E.M and differences were tested for significance using the 2-tailed Students t-test. Results: We determined that miR-200a expression was significantly lower in neuroblastoma tumors than the adjacent non-cancer tissue. Over-expression of miR-200 are reduced cell viability in neuroblastoma cells and inhibited tumor growth in mouse xenografts. We identified AP-$2{\gamma}$ as a novel target for miR-200a in neuroblastoma cells. Thus miR-200a targets the 3'UTR of AP-$2{\gamma}$ and inhibits its mRNA and protein expression. Furthermore, our result showed that shRNA knockdown of AP-$2{\gamma}$ in neuroblastoma cells results in significant inhibit of cell proliferation and tumor growth in vitro, supporting an oncogenic role of AP-$2{\gamma}$ in neuroblastoma. Conclusions: Our study revealed that miR-200a is a candidate tumor suppressor in neuroblastoma, through direct targeting of AP-$2{\gamma}$. These findings re-enforce the proposal of AP-$2{\gamma}$ as a therapeutic target in neuroblastoma.

γ-APS로 표면처리된 천연 제올라이트/에폭시 복합재료의 계면특성 (Interfacial Characteristics of Epoxy Composites Filled with γ-APS Treated Natural Zeolite)

  • 이재영;이상근;김상욱
    • 접착 및 계면
    • /
    • 제2권3호
    • /
    • pp.1-8
    • /
    • 2001
  • ${\gamma}$-APS (${\gamma}$-aminopropyltriethoxysilane)로 표면처리된 천연제올라이트와 에폭시 수지 복합 재료의 표면 자유 에너지, 인상강도 및 계면 모폴로지에 대해 연구하였다. 표면처리하지 천연제올라이트의 표면 자유에너지 성분 중에서 무극성 성분인 Lifshitz-van der Waals 성분, ${\gamma}{\frac{LW}{SV}}$$19.22mJ/m^2$이었고, 극성 성분인 Lewis acid-base 성분, ${\gamma}{\frac{AB}{SV}}$$15.27mJ/m^2$이 있다. ${\gamma}$-APS의 처리농도가 증가함에 따라 ${\gamma}{\frac{LW}{SV}}$값은 증가하였지만 ${\gamma}{\frac{AB}{SV}}$는 감소하였으며, 이는 ${\gamma}$-APS의 소수성 성분인 알킬기의 영향이 친수성 기인 아민이나 수산기의 영향보다 커지기 때문이다. 인장강도와 Young율은 ${\gamma}$-APS 처리에 의해 개선되었으며, SEM 분석에 의해 계면특성이 향상되었음을 확인하였다.

  • PDF

옥수수수염, 율무, 표고버섯 그리고 사과껍질을 함유한 빵의 항산화 및 3T3-L1 지방 전구세포 분화 억제 활성 (Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes)

  • 이창원;박용일;김수현;임희경;정미자
    • 한국식품영양과학회지
    • /
    • 제45권5호
    • /
    • pp.651-663
    • /
    • 2016
  • 옥수수수염, 율무, 표고버섯 그리고 사과껍질 70% 주정 추출물들(CS, JT, LE, AP)은 항산화 활성이 있었고, 그것 중에 CS가 총폴리페놀 함량, 플라보노이드 함량, DPPH 라디칼 소거작용, ABTS 라디칼 소거작용 그리고 환원력과 같은 항산화 효과가 가장 높았다. 지방분화는 CS, JT, LE, AP 그리고 옥수수수염, 율무, 표고버섯 그리고 사과껍질을 함유한 개발 빵 추출물(DB)을 각각 처리한 3T3-L1 지방세포에서 연구하였다. DB1과 DB2는 지방 전구세포 분화 억제 및 항산화 효과가 있었다. 3T3-L1 지방세포에서 중성지방 축적은 실험한 시료들(CS, JT, LE, AP) 중에서 CS가 분화된 3T3-L1 지방세포에서 TG 축적을 가장 억제하였고 3T3-L1에서 지방분화와 관련된 인자들을 조절하였다. CS는 3T3-L1 세포에서 지방구 형성과 지방세포 분화를 농도 의존적으로 억제하였다. 지방분화 동안 다양한 농도(10, 50, $100{\mu}g/mL$)에서 CS와 함께 처리한 3T3-L1 세포에서 $C/EBP{\beta}$, $PPAR{\gamma}$ 그리고 aP2 mRNA와 단백질 수준에 대한 CS의 영향력을 실험하였고, 3T3-L1 지방세포에 CS 처리는 $PPAR{\gamma}$와 aP2 mRNA 발현을 감소시켰다. CS는 역시 지방분화 중에 $C/EBP{\beta}$, $PPAR{\gamma}$와 aP2 단백질의 증가를 현저하게 저해하였다. 개발된 빵들은 CS에 의해 지방 전구세포(3T3-L1 preadipocytes) 분화 억제 효과가 있고, CS는 3T3-L1 지방세포에서 $C/EBP{\beta}$, $PPAR{\gamma}$와 aP2 신호전달경로를 저해함으로써 지방 전구세포 분화 억제 효과를 나타내었다. JT, LE와 AP는 지방 전구세포 분화 억제 효과는 없었지만 강한 항산화 효과가 있었다. 이들 결과는 개발된 빵이 비만예방 및 억제뿐만 아니라 산화적 스트레스에 의해 유발되는 질병에 도움을 줄 수 있는 건강빵이라는 것을 제안하였다.

닭 인터페론 유전자의 클로닝에 관한 연구 (MOLECULAR CLONING OF CHICKEN INTERFERON-GAMMA)

  • 송기덕;;한재용
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 1999년도 제16차 정기총회및학술발표회
    • /
    • pp.34-50
    • /
    • 1999
  • A cDNA encoding chicken interferon-gamma (chIFN-${\gamma}$) was amplified from P34, a CD4$^{+}$ T-cell hybridoma by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into pUC18. THe sequences of cloned PCR products were determined to confirm the correct cloning. Using this cDNA as probe, chicken genomic library from White Leghorn spleen was screened. Phage clones harboring chicken interferon-gamma (chIFN-${\gamma}$) were isolated and their genomic structure elucidated. The chIFN-${\gamma}$ contains 4 exons and 3 introns spanning over 14 kb, and follows the GT/AG rule for correct splicing at the exon/intron boundaries. The four exons encode 41, 26, 57 and 40 amino acids, respectively, suggesting that the overall structure of IFN-${\gamma}$ is evolutionairly conserved in mammalian and avian species. The 5’-untranslated region and signal sequences are located in exon 1. Several AT-rich sequences located in the fourth exon may indicate a role in mRNA turnover. The 5’-flanking region contains sequences homologous to the potential binding sites for the mammalian transcription factors, activator protein-1(AP-1) activator protein-2(AP-2) cAMP-response element binding protein(CREB), activating transcription factor(ATF), GATA-binding fator(GATA), upstream stimulating factor(USF), This suggests that the mechanisms underlying transcriptional regulation of chicken and mammalian IFN-${\gamma}$ genes may be similar.r.

  • PDF

Molecular cloning and characterization of novel human JNK2 (MAPK9) transcript variants that show different stimulation activities on AP-1

  • Wang, Pingzhang;Xiong, Ying;Ma, Chuan;Shi, Taiping;Ma, Dalong
    • BMB Reports
    • /
    • 제43권11호
    • /
    • pp.738-743
    • /
    • 2010
  • The c-Jun $NH_2$-terminal kinase (JNK) signaling pathway participates in many physiological functions. In the current study we reported the cloning and characterization of five novel JNK2 transcript variants, which were designated as $JNK2\alpha3$, $JNK2\alpha4$, $JNK2\beta3$, $JNK2\gamma1$ and $JNK2\gamma2$, respectively. Among them, $JNK2\alpha4$ and $JNK2\gamma2$ are potential non-coding RNA because they contain pre-mature stop codons. Both $JNK2\alpha3$ and $JNK2\beta3$ contain an intact kinase domain, and both encode a protein product of 46 kDa, the same as those of $JNK2\alpha1$ and $JNK2\beta1$. $JNK2\gamma1$ contains a disrupted kinase domain and it showed a disable function. When over-expressed in mammalian cells, $JNK2\alpha3$ showed higher activity on AP-1 than that of $JNK2\beta3$ and $JNK2\gamma1$. Furthermore, $JNK2\alpha3$ and $JNK2\beta3$ showed different levels of substrate phosphorylation, although they both could promote the proliferation of 293T cells. Our results further demonstrate that JNK2 isoforms preferentially target different substrates and may regulate the expression of various target genes.

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy-${\Delta}^{12, 14}$-prostaglandin $J_2$ (15-deoxy-$PGJ_2$), a naturally occurring ligand activates the peroxisome proliferator-activated $receptor-{\gamma}(PPAR-{\gamma}$). Activation of $PPAR-{\gamma}$ has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-$PGJ_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-$PGJ_2$ (0.2 to 1.6 ${\mu}M$) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/ml). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-$PGJ_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-$PGJ_2$(0.8 ${\mu}M$) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-$PGJ_2$ on the expression of p38 MAP kinase and activation of AP-1, The promoting ability of 15-deoxy-$PGJ_2$ did not occur through $PPAR-{\gamma}$, as synthetic PPAR-${\gamma}$ agonist andantagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), $PPAR-{\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and $PGE_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of f 5-deoxy-$PGJ_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-$PGJ_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 single pathway may be important in the promoting activity of 15-deoxy-$PGJ_2$ cells.

  • PDF

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy- Δ$\^$12,14/-prostaglandin J$_2$ (15-deoxy-PGJ$_2$), a naturally occurring ligand activates the peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$). Activation of PPAR-y has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-PGJ$_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-PGJ$_2$ (0.2 to 1.6 ${\mu}$M) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/$m\ell$). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-PGJ$_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-PGJ$_2$ (0.8 ${\mu}$M) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-PGJ$_2$ on the expression of p38 MAP kinase and activation of AP-1. The promoting ability of 15-deoxy-PGJ$_2$ did not occur through PPAR-${\gamma}$, as synthetic PPAR-${\gamma}$ agonist and antagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), PPAR-${\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and PGE$_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of 15-deoxy-PGJ$_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-PGJ$_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 signal pathway may be important in the promoting activity of 15-deoxy-PGJ$_2$ on the differentiation of PC12 cells.

  • PDF

ACTIVATION OF P38 MAP KINASE AND AP-1 DURING THE PROMOTION OF NEURITE EXTENSION OF PC-12 CELLS BY 15-DEOXY-$\Delta$12,14-PROSTAGLANDIN J2

  • Song, Y.S.;Oh. J.H.;Park, K.S.;Jung, K.M.;Lee, M.K.;Jung, H.K.;Jung, S.Y.;Hong, J.T.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.110-110
    • /
    • 2002
  • 15-Deoxy-$\Delta$12, 14-prostaglandin J2 (15-deoxy-PGJ2), a naturally occurring ligand activates the peroxisome proliferator-activated receptor-$\gamma$(PPAR-$\gamma$). It was known to have promoting ability of nerve growth factor(NGF)-induced neurite extension. However, it is not clear yet as to what signaling pathway is involved in its promoting ability of neurite extension.(omitted)

  • PDF

Formation of DNA-Protein Crosslink at Oxidized Abasic Site Mediated by Human DNA Polymerase Iota and Mitochondrial DNA Polymerase Gamma

  • Son, Mi-Young;Jun, Hyun-Ik;Goo, Sun-Young;Sung, Jung-Suk
    • 대한의생명과학회지
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2009
  • Human genomic DNA is continuously attacked by oxygen radicals originated from cellular metabolic processes and numerous environmental carcinogens. 2-deoxyribonolactone (dL) is a major type of oxidized abasic (AP) lesion implicated in DNA strand scission, mutagenesis, and formation of covalent DNA-protein crosslink (DPC) with DNA polymerase (Pol) ${\beta}$. We show here that human DNA polymerase (Pol)${\iota}$ and mitochondrial $Pol{\gamma}$ give rise to stable DNA-protein crosslink (DPC) formation that is specifically mediated by dL lesion. $Pol{\gamma}$ mediates DPC formation at the incised dL residue by its 5'-deoxyribose-5-phosphate (dRP) lyase activity, while $Pol{\gamma}$ cross links with dL thorough its intrinsic dRP lyase and AP lyase activities. Reactivity in forming dL-mediated DPC was significantly higher with $Pol{\gamma}$ than with $Pol{\iota}$. DPC formation by $Pol{\gamma}$, however, can be reduced by an accessory factor of $Pol{\gamma}$ holoenzyme that may attenuate deleterious effects of crosslink adducts on mitochondrial DNA. Comparative kinetic analysis of DPC formation showed that the rate of DPC formation with either $Pol{\iota}$ or $Pol{\gamma}$ was lower than that with $Pol{\beta}$. These results revealed that the activity of catalytic lyase in DNA polymerases determine the efficiency of DPC formation with dL damages. Irreversible crosslink formation of such DNA polymerases by dL lesions may result in a prolonged strand scission and a suicide of DNA repair proteins, both of which could pose a threat to the genetic and structural integrity of DNA.

  • PDF

Bacillus subtilis BS 62의 γ-Glutamyltranspeptidase 유전자 (γ-Glutamyltranspeptidase Gene from Bacillus subtilis BS 62)

  • 이태은;윤민호;최우영
    • 농업과학연구
    • /
    • 제34권2호
    • /
    • pp.161-170
    • /
    • 2007
  • Poly($\gamma$-glutamic acid) 및 levan의 생성균주로 알려진 Bacillus subtilis BS 62의 $\gamma$-GTP(ggt) 유전자를 해석하기 위하여 PCR 반응에 의해 BS 62의 염색체 DNA로부터 약 2.5 kb의 $\gamma$-GTP(ggt) 유전자 분획을 얻어 그 PCR 산물의 염기서열을 분석하여 기왕에 보고된 기타의 ggt 유전자와 비교 분석한 결과, B. subtilis $\gamma$-GTP 유전자(BSU49358)와 98%의 높은 상동성을 보였으며, Pseudomonas sp. A14(S63255)와는 37%, 방선균인 Streptomyces avermitils(AP005028)의 게놈 DNA와는 38%의 상동성을 나타냈다. BS 62의 $\gamma$-GTP 유전자의 open reading frame은 587개의 amino acid로 구성된 polypeptide의 것으로 해석되었으며, N-terminal의 28개 아미노산은 B. subtilis 펩타이드의 전형적인 형태를 보였고, 전형적인 리보솜의 부착부위는 개시코돈 ATG의 위쪽 7번에서 12번 염기(AGGAGG)에 위치하였고, 그리고 종지코돈 다음에서는 stem-loop 구조, ORF의 위쪽 약 50 bp 지점에서는 catabolite-responsive element가 발견되었다. 또한 B. subtilis 효소의 촉매자리로 추정되는 467번 잔기는 threonine으로서, 다른 박테리아의 serine, 포유동물의 cysteine과는 구별되는 것이었다.

  • PDF