• Title/Summary/Keyword: AP Propellant

Search Result 74, Processing Time 0.019 seconds

Study on the Formulation of an Energetic Thermoplastic Propellant and its Properties(II) (고에너지 열가소성 추진제 제조 및 특성연구(II))

  • Kim, Han-cheol;Park, Eui-Yong;Jeong, Jea-Yun;Kim, Yoon-Gon;Choi, Sung-han;Kang, Tae-won;Oh, Kyeong-won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2020
  • In this study, measurement and analysis results from Differential scanning calorimetry(DSC) and Thermogravimetric analysis(TGA) on the newly developed high-energy thermoplastic elastomer(ETPE) propellant are described, followed by the previous study done under the same title as this paper [1]. The characteristics of high-energy thermoplastic propellant were also verified by conducting thermal analysis, and the LSGT, Shotgun & RQ Bomb test, was carried out as well. High energetic thermoplastic binders containing 45% of GAP(Glycidyl Azide Polymer), energetic plasticizer(DEGDN) and Oxidizer Aonium Perchlorate), RDX(reseach development explosive, cyclotrimethylenetrinitramine) were used to formulate the propellant.

Properties of HTPB/AP/Butacene propellants (HTPB/AP/Butacene 추진제 특성 연구)

  • Kim Chang-Kee;Yoo Ji-Chang;Hwang Gab-Sung;Yim Yoo-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.75-78
    • /
    • 2005
  • The present work has been studied to investigate the effect of formulation on friability of HTPB/AP propellants including Butacene and $Cr_{2}O_3$. The mechanical properties and burning rate of the propellants were measured using Inston tensile tester and strand burner, respectively. Friability was calculated by shot-gun and closed bomb test. The result showed that friability was higher, as the content of Butacene or AP $6{\mu}m$ in the propellant formulations was increased.

  • PDF

Properties of HTPB/AP/Butacene Propellants (HTPB/AP/Butacene 추진제 특성 연구)

  • Kim Changkee;Yoo Jichang;Hwang Gabsung;Yim Yoojin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.40-45
    • /
    • 2005
  • In the present work, the effect of formulation on friability of HTPB/AP propellants including Betacene and $Cr_2O_3$ has been studied. The mechanical properties and burning rate of the propellants were measured using Inston tensile tester and strand burner, respectively. Friability was calculated from shot-gun and closed bomb test data. The result showed that friability was higher, as the content of Butacene or AP $6{\mu}m$ in the propellant formulations was increased.

Measurement of Pressure-coupled Combustion Instability Characteristics : Acoustic Attenuation by Particulate Matter(Al) and Combustion Response of Solid Propellant (고체로켓 연소관 내 압력섭동에 대한 입자상 물질에 의한 음향 감쇠 및 연소응답 특성 측정)

  • Lim, Jihwan;Lee, Sanghyup;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.16-26
    • /
    • 2014
  • T-Burner tests of an Al/HTPB propellant in conjunction with a Pulsed DB/AB Method were conducted to find an acoustic amplification factor. Aluminum-free and aluminum-heavy propellants were examined. Instant surface ignition was successfully made by the use of a supplementary propellant of fractionally higher reaction rate. With the presence of higher aluminum concentration in the propellants, the pressure perturbations were promptly damped down and the pressure fluctuations were no longer dispersive. Addition of aluminum particles into the propellant was advantageous for stabilizing pressure-coupled unstable waves.

Burning rate measurement technique of solid propellant at high pressure (고체추진제의 고압 연소속도 측정기법)

  • Yoo Ji-Chang;Jung Jung-Young;Lee Kyung-Joo;Min Byung-Sun;Son Young-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.88-91
    • /
    • 2005
  • The combustion characteristics of high burning HTPB/AP solid propellants have been investigated by means of a closed bomb method of interval volume of 200 co and 700 cc at pressures from 1000 to 30,000 psi. The burning rate data measured by closed bomb are in good agreement with strand burner test results at pressure from 1000 to 5000 psi using disc sample of 1 mm thickness. The burning rate dat by using 200 cc closed bomb are in general agreement with that of 700 cc closed bomb. At pressure between $5,000\sim7,000$ psi, a market increase in pressure dependence of the linear burning rate occurs for HTPB/AP propellant.

  • PDF

Recovery of Ammonium Perchlorate from Solid Rocket Motor Demilitarization (고체 추진기관 비군사화를 통한 암모늄퍼클로레이트의 회수)

  • Choi, Jae-Seo;Han, Sang-Keun;Choi, Sung-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.460-463
    • /
    • 2011
  • Different kinds of solid rocket motors manufactured for various aim have their own shelf life. So they must be done away if not used. In general, ammonium perchlorate(AP) has used in the process of solid rocket motors, which is environmental pollutant. Out-burning and out-detonation were usual in the past, but they polluted the surrounding environment and raised safety issues. As an alternative to resolve these, water-washout process to separate the propellant from rocket motors and an eco-friendly way for recovering AP are studied in this paper.

  • PDF

Solid Propellants for Propulsion System Including a Yellow Iron Oxide (황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구)

  • Park, Sungjun;Won, Jongung;Park, Jungho;Park, Euiyong;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.65-71
    • /
    • 2018
  • There is no significant difference in the initial viscosity of a propellant applied with yellow iron oxide and red iron oxide. In addition, the thermal decomposition rate of the material with added yellow iron oxide is faster than that with the addition of red iron oxide. Specifically, it was confirmed that the pressure exponent was 18% lower at high temperature and high pressure with yellow iron oxide than with red iron oxide. The initial viscosity was lowest at 71% of the large particle to small particle ratio.

Solid Propellants for Propulsion System Including A Yellow Iron Oxide (황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구)

  • Park, Sungjun;Choi, Sunghan;Won, Jongung;Park, Jungho;Park, Euiyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.498-503
    • /
    • 2017
  • There is no unusual difference in the initial viscosity of the propellant applied with yellow iron oxide and red iron oxide. In addition, the thermal decomposition rate of the material added with yellow iron oxide is faster than that of the addition of red iron oxide. Especially, it was confirmed that the pressure exponent was 18% lower at high temperature and high pressure. The initial viscosity was lowest at 71% of large particle/small particle ratio

  • PDF

Fomulation Study for GAP/ADN Propellant (GAP/ADN 추진제 조성 연구)

  • 유지창
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.25-25
    • /
    • 1998
  • 최근의 선진국의 전략미사일에 사용되는 추진제 개발 방향은 고에너지, 저민감, 무연 및 무공해 추진제를 목표로 하고 있다. 현재까지 가장 널리 사용되어온 AP는 성능이나 기계적 특성에서 우수한 산화제이나 로켓 모타 배출기체 중에 HC1을 생성함으로써 2차 연기를 생성하며, HC1 자체가 인체에 유해한 물질이라는 단점들을 가지고 있다. 또한 RDX나 HMX는 에너지가 높은 반면 쇽(shock)에 대해 매우 민감한 단점을 가지고 있다. AN은 이러한 HC1을 생성하는 AP의 단점과 쇽에 민감한 RDX와 HMX의 단점을 해결할 수 있는 대체 산화제로 사용할 수 있으나, 성능이 대외적으로 떨어지며 상변이와 흡습성이 높은 단점이 있다. ADN은 -100~+10$0^{\circ}C$범위에서 상 변이가 없고 밀도는 1.801g/㎤, Hf는 -290cal/g이다. ADN을 산화제로 사용하면 HTPB/AP 추진제와 동등하거나 그 이상의 성능을 갖는 추진제를 만들 수가 있으며, 유해 기체인 HC1을 배출하지 않음으로 인하여 2차 연기를 없애는 장점이 있다.

  • PDF

Increasing the burning rate of solid propellants (고체추진제의 연소속도 증진기술)

  • Kim, Jun-Hyung;Yim, Yoo-Jin;Kim, In-Chul;Park, Young-Chul;Seo, Tae-Seok;Yong, Jung-Jung;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.169-172
    • /
    • 2009
  • In this study, the current researches and the developing trend of the high burning rate solid propellants were briefly introduced and the effects of burning rate modifiers in the propellants on the combustion properties were reviewed. At the same time, bis(ethylenediamine)copper perchlorate(BECP) has been prepared as a burning rate modifier, and the burning characteristics were investigated in Butacene/AP propellants. The results showed that the metal complex, BECP, can increase remarkably the burning rate of high burning rate Butacene/AP propellants.

  • PDF