• Title/Summary/Keyword: AOPs

Search Result 53, Processing Time 0.019 seconds

Adverse Outcome Pathways for Prediction of Chemical Toxicity at Work: Their Applications and Prospects (작업장 화학물질 독성예측을 위한 독성발현경로의 응용과 전망)

  • Rim, Kyung-Taek;Choi, Heung-Koo;Lee, In-Seop
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.141-158
    • /
    • 2019
  • Objectives: An adverse outcome pathway is a biological pathway that disturbs homeostasis and causes toxicity. It is a conceptual framework for organizing existing biological knowledge and consists of the molecular initiating event, key event, and adverse output. The AOP concept provides intuitive risk identification that can be helpful in evaluating the carcinogenicity of chemicals and in the prevention of cancer through the assessment of chemical carcinogenicity predictions. Methods: We reviewed various papers and books related to the application of AOPs for the prevention of occupational cancer. We mainly used the internet to search for the necessary research data and information, such as via Google scholar(http://scholar.google.com), ScienceDirect(www.sciencedirect.com), Scopus(www.scopus. com), NDSL(http: //www.ndsl.kr/index.do) and PubMed(http://www.ncbi.nlm.nih.gov/pubmed). The key terms searched were "adverse outcome pathway," "toxicology," "risk assessment," "human exposure," "worker," "nanoparticle," "applications," and "occupational safety and health," among others. Results: Since it focused on the current state of AOP for the prediction of toxicity from chemical exposure at work and prospects for industrial health in the context of the AOP concept, respiratory and nanomaterial hazard assessments. AOP provides an intuitive understanding of the toxicity of chemicals as a conceptual means, and it works toward accurately predicting chemical toxicity. The AOP technique has emerged as a future-oriented alternative to the existing paradigm of chemical hazard and risk assessment. AOP can be applied to the assessment of chemical carcinogenicity along with efforts to understand the effects of chronic toxic chemicals in workplaces. Based on these predictive tools, it could be possible to bring about a breakthrough in the prevention of occupational and environmental cancer. Conclusions: The AOP tool has emerged as a future-oriented alternative to the existing paradigm of chemical hazard and risk assessment and has been widely used in the field of chemical risk assessment and the evaluation of carcinogenicity at work. It will be a useful tool for prediction, and it is possible that it can help bring about a breakthrough in the prevention of occupational and environmental cancer.

Kinetic and Statistical Analysis of Adsorption and Photocatalysis on Sulfamethoxazole Degradation by UV/$TiO_2$/HAP System (UV/$TiO_2$/HAP 시스템에서 Sulfamethoxazole의 흡착과 광촉매반응에 대한 동역학적 및 통계적 해석)

  • Chun, Suk-Young;Chang, Soon-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • Antibiotics have been considered emerging compounds due to their continuous input and persistence in environment. Due to the limited biodegradability and widespread use of these antibiotics, an incomplete removal is attained in conventional wastewater treatment plants and relative large quantities are released into the environment. In this study, it was determined the adsorption and photocatalysis kinetics of antibiotics (Sulfamethoxazole, SMX) with various catalyst (Titanium dioxide; $TiO_2$, Hydroxyapatite; HAP) conditions under UV/$TiO_2$/HAP system. In addition, the statistical analysis of response surface methods (RSM) was used to determine the effects of operating parameters on UV/$TiO_2$/HAP system. $TiO_2$/HAP adsorbent were found to follow the pseudo second order reaction in the adsorption. In the result of applied intrapaticle diffusion model, the constants of reaction rate were $TiO_2$=$0.064min^{-1}$, HAP=$0.2866min^{-1}$ and $TiO_2$/HAP=$0.3708min^{-1}$, respectively.The result of RSM, term of regression analysis in analysis of variance (ANOVA) showed significantly p-value (p<0.05) and high coefficients for determination values($R^2$=96.2%, $R^2_{Adj}$=89.3%) that allowed satisfactory prediction of second order regression model. And the estimated optimal conditions for Y(Sulfamethoxazole removal efficiency, %) were $x_1$(initial concentration of Sulfamethoxazole)=-0.7828, $x_2$(amount of catalyst)=0.9974 and $x_3$(reation time)=0.5738 by coded parameters, respectively. According to the result of intraparticle diffusion model and photocatalysis experiments, it was shown that the $TiO_2$/HAP was more effective system than conventional AOPs(advanced oxidation processes, UV/$TiO_2$ system).

Intercomparing the Aerosol Optical Depth Using the Geostationary Satellite Sensors (AHI, GOCI and MI) from Yonsei AErosol Retrieval (YAER) Algorithm (연세에어로졸 알고리즘을 이용하여 정지궤도위성 센서(AHI, GOCI, MI)로부터 산출된 에어로졸 광학두께 비교 연구)

  • Lim, Hyunkwang;Choi, Myungje;Kim, Mijin;Kim, Jhoon;Go, Sujung;Lee, Seoyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.119-130
    • /
    • 2018
  • Aerosol Optical Properties (AOPs) are retrieved using the geostationary satellite instruments such as Geostationary Ocean Color Imager (GOCI), Meteorological Imager (MI), and Advanced Himawari Imager (AHI) through Yonsei AErosol Retrieval algorithm (YAER). In this study, the retrieved aerosol optical depths (AOD)s from each instrument were intercompared and validated with the ground-based sunphotometer AErosol Robotic NETwork (AERONET) data. As a result, the four AOD products derived from different instruments showed consistent results over land and ocean. However, AODs from MI and GOCI tend to be overestimated due to cloud contamination. According to the comparison results with AERONET, the percentage within expected errors (EE) are 36.3, 48.4, 56.6, and 68.2% for MI, GOCI, AHI-minimum reflectivity method (MRM), and AHI-estimated surface reflectance from shortwave Infrared (ESR) product, respectively. Since MI AOD is retrieved from a single visible channel, and adopts only one aerosol type by season, EE is relatively lower than other products. On the other hand, the AHI ESR is more accurate than the minimum reflectance method as used by GOCI, MI, and AHI MRM method in May and June when the vegetation is relatively abundant. These results are explained by the RMSE and the EE for each AERONET site. The ESR method result show to be better than the other satellite product in terms of EE for 15 out of 22 sites used for validation, and they are better than the other product for 13 sites in terms of RMSE. In addition, the error in observation time in each product is found by using characteristics of geostationary satellites. The absolute median biases at 00 to 06 Universal Time Coordinated (UTC) are 0.05, 0.09, 0.18, 0.18, 0.14, 0.09, and 0.10. The absolute median bias by observation time has appeared in MI and the only 00 UTC appeared in GOCI.