• 제목/요약/키워드: ANSYS simulation

검색결과 445건 처리시간 0.024초

소형 선박 제어 헤드 조립체의 국산화를 위한 설계/해석, 제작에 관한 연구 (A Study on the Design/Simulation and Manufacturing for Localization of Parts in Scoop Control Assembly of Small Military Boat)

  • 여경환;김재현;진철규;천현욱
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.597-608
    • /
    • 2021
  • The control head components used in small military vessels are designed to be domestically produced, prototypes, structural analysis, and casting methods are designed and cast. The control head assembly consists of a lever, an aluminum outside cover, Middle, front gear cover, back gear cover, and a zinc worm gear. In order to reverse the design of each component, 3D scanning device was used, 3D modeling was performed by CATIA, and prototype productions were carried out by 3D printer. In order to reduce the cost of components, gating system is used by gravity casting method. The SRG ratio of 1:0.9:0.6 was set by applying non-pressurized gating system to aluminum parts, 1:2.2:2.0 and pressurized gating system to zinc parts, and the shapes of sprue, runner and gate were designed. The results of porosity were also confirmed by casting analysis in order to determine whether the appropriate gating system can be designed. The results showed that all parts started solidification after filling completely. ANSYS was used for structural analysis, and the results confirmed that all five components had a safety factor of 15 more. All castings are free of defects in appearance, and CT results show only very small porosity. ZnDC1 zinc alloy worm gear has a tensile strength of 285 MPa and an elongation of 8%. The tensile strength of the four components of A356 aluminum alloy is about 137-162 MPa and the elongation is 4.8-6.5%.

Mathematical Model and Design Optimization of Reduction Gear for Electric Agricultural Vehicle

  • Pratama, Pandu Sandi;Byun, Jae-Young;Lee, Eun-Suk;Keefe, Dimas Harris Sean;Yang, Ji-Ung;Chung, Song-Won;Choi, Won-Sik
    • 한국산업융합학회 논문집
    • /
    • 제22권1호
    • /
    • pp.1-9
    • /
    • 2019
  • In electric agricultural machine the gearbox is used to increase torque and lower the output speed of the motor shaft. The gearbox consists of several shafts, helical gears and spur gears works in series. Optimization plays an important role in gear design as reducing the weight or volume of a gear set will increase its service life and improve the bearing capacity. In this paper the basic design parameters for gear like shaft diameter and face width are considered as the input variables. The bending stress and material volume is considered as the objective function. ANSYS was used to investigate the bending stress when the variable was changed. Artificial Neural Network (ANN) was used to obtain the mathematical model of the system based on the bending stress behaviour. The ANN was used since the output system is nonlinear. The Genetic Algorithm (GA) technique of optimization is used to obtain the optimized values of shaft diameter and face width on the pinion based on the ANN mathematical model and the results are compared as that obtained using the traditional method. The ANN and GA were performed using MATLAB. The simulation results were shown that the proposed algorithm was successfully calculated the value of shaft diameter and face width to obtain the minimal bending stress and material volume of the gearbox.

기판 소재에 따른 패널 레벨 패키지 공정 단계별 warpage 해석 (Process Induced Warpage Simulation for Panel Level Package)

  • 문아영;김성동
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.41-45
    • /
    • 2018
  • 패널 레벨 패키지(Panel Level Package)에서 공정 단계별로 발생하는 휨(warpage)에 대해 유한요소법을 이용하여 전산모사를 진행하였다. $5{\times}5mm^2$ 크기의 실리콘 칩이 총 221개가 포함된 $122.4{\times}93.6mm^2$ 크기의 패널에 대해서 (1) EMC 몰딩, (2) detach core 부착, (3) 가열, (4) 캐리어 분리, (5) 냉각의 5 단계에 대해서 해석을 수행하였으며, 캐리어와 detach core 소재로 유리와 FR4의 조합이 휨 현상에 미치는 영향을 조사하였다. 캐리어 및 detach core의 소재에 따라 공정 단계별로 휨의 경향이 다르게 나타나고 있으나, 최종적으로는 유리를 캐리어로 사용하는 경우에 detach core의 소재와 관계없이 FR4 캐리어에 비해 낮은 휨 값을 나타내었으며 유리 캐리어와 유리 detach core의 조합에서 가장 낮은 휨 값이 관찰되었다.

Numerical Study on Unified Seakeeping and Maneuvering of a Russian Trawler in Wind and Waves

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu;Kim, Young Hun
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.173-182
    • /
    • 2021
  • The maneuvering performance of a ship on the actual sea is very different from that in calm water due to wave-induced motion. Enhancement of a ship's maneuverability in waves at the design stage is an important way to ensure that the ship navigates safely. This paper focuses on the maneuvering prediction of a Russian trawler in wind and irregular waves. First, a unified seakeeping and maneuvering analysis of a Russian trawler is proposed. The hydrodynamic forces acting on the hull in calm water were estimated using empirical formulas based on a database containing information on several fishing vessels. A simulation of the standard maneuvering of the Russian trawler was conducted in calm water, which was checked using the International Maritime Organization (IMO) standards for ship maneuvering. Second, a unified model of seakeeping and maneuvering that considers the effect of wind and waves is proposed. The wave forces were estimated by a three-dimensional (3D) panel program (ANSYS-AQWA) and used as a database when simulating the ship maneuvering in wind and irregular waves. The wind forces and moments acting on the Russian trawler are estimated using empirical formulas based on a database of wind-tunnel test results. Third, standard maneuvering of a Russian trawler was conducted in various directions under wind and irregular wave conditions. Finally, the influence of wind and wave directions on the drifting distance and drifting angle of the ship as it turns in a circle was found. North wind has a dominant influence on the turning trajectory of the trawler.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

Influences of guideway geometry parameters and track irregularity on dynamic performances of suspended monorail vehicle-guideway system

  • He, Qinglie;Yang, Yun;Cai, Chengbiao;Zhu, Shengyang
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.1-16
    • /
    • 2022
  • This work elaborately investigates the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the suspended monorail vehicle-guideway system (SMVGS). Firstly, a spatial dynamic analysis model of the SMVGS is established by adopting ANSYS parameter design language. Then, the dynamic interaction between a vehicle with maximum design load and guideway is investigated by numerical simulation and field tests, revealing the vehicle-guideway dynamic features. Subsequently, the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the SMVGS are analyzed and discussed in detail, and the reasonable ranges of several key geometry parameters of the guideway are also obtained. Results show that the vehicle-guideway dynamic responses change nonlinearly with an increase of the guideway span, and especially the guideway dynamic performances can be effectively improved by reducing the guideway span; based on a comprehensive consideration of all performance indices of the SMVGS, the deflection-span ratio of the suspended monorail guideway is finally recommended to be 1/1054~1/868. The train load could cause a large bending deformation of the pier, which would intensify the car-body lateral displacement and decrease the vehicle riding comfort; to well limit the bending deformation of the pier, its cross-section dimension is suggested to be more than 0.8 m×0.8 m. The addition of the track irregularity amplitude has small influences on the displacements and stress of the guideway; however, it would significantly increase the vehicle-guideway vibrations and rate of load reduction of the driving tyre.

시뮬레이션 기반 3차원 엮임 재료의 물성치 분석 및 인공 신경망 해석 (Simulation-Based Material Property Analysis of 3D Woven Materials Using Artificial Neural Network)

  • 김병모;하승현
    • 한국전산구조공학회논문집
    • /
    • 제36권4호
    • /
    • pp.259-264
    • /
    • 2023
  • 본 논문에서는 3차원 엮임 재료의 재료 물성치들을 효율적으로 분석하고 추후 최적설계 연구에 활용하기 위해서 파라메트릭 배치 해석 워크플로우를 제시하였다. 3차원 엮임 재료를 구성하는 와이어들 사이의 간격을 설계 매개변수로 하는 파라메트릭 모델에 대해서 임의의 변수 조합을 가지는 2,500개의 수치 모델을 생성하였으며, 상용 프로그램인 매트랩과 앤시스의 여러 모듈을 사용하여 체적탄성계수, 열전도도, 유체투과율과 같은 다양한 재료 물성치들을 배치 해석을 통해서 자동으로 얻어질 수 있도록 구성하였다. 이와 같이 얻어진 대용량의 재료 물성치 데이터베이스를 활용해서 회귀 분석을 수행하였으며, 그 결과 설계 변수들과 재료 물성치 사이의 경향성과 수치 해석 결과의 정확도를 검증하였다. 또한 확보된 데이터베이스를 통해서 3차원 엮임 재료의 물성치를 예측할 수 있는 인공 신경망을 구성하고 학습시켰으며, 그 결과 임의의 설계 매개변수 값들을 가지는 엮임 재료 모델에 대해서 구조 및 유체해석 과정 없이도 높은 정확도로 재료 물성치들을 추정할 수 있음을 확인하였다.

CFD 해석을 이용한 철망 파렛트 컨테이너 적입 마늘의 저온 저장고내 온도 분포 연구 (Study on Temperature Distribution in Cold Storage of Korean Garlic in Wire Mesh Pallet Container Using CFD Analysis)

  • 최동수;김용훈;김진세;박천완;정현모;박종민
    • 한국포장학회지
    • /
    • 제29권3호
    • /
    • pp.195-201
    • /
    • 2023
  • Garlic (Allium sativum)is a major crop in most Asian countries, and its consumption in Asia-Pacific countries exceeds 90% of the global consumption. It contains beneficial ingredients and numerous essential nutrients, such as manganese, vitamin B6, and vitamin B1. Garlic demand is rising not only in Asian countries but also around the world. Particularly, garlic demand has been steadily increasing in European countries, such as Spain, France, Italy, and the American continent. In South Korea, 331,671 tons and 387,671 tons of garlic was produced in 2018 and 2019, respectively, making the country the fifth ranking garlic producer in the world, and the production has been increasing every year. In this study, the study on temperature distribution in cold storage of Korean garlic in folding wire mesh pallet container using CFD (Computational Fluid Dynamics) analysis was performed and Computations were based a commercial simulation software (ANSYS Workbenh Ver. 18.0). Considering the respiration heat of garlic, the decreasing rate of temperature in the area in contact with the cold air was fast due to the inflow of cold air inside, while the decreasing rate of temperature in the center of the pallet was very low. In order to maintain a uniform temperature distribution inside the agricultural product storage pallet in a low-temperature warehouse, it is considered desirable to install an air passageway to allow low-temperature air to flow into the wire mesh pallet.

전산유체역학(CFD)을 이용한 유동층반응기 내부의 목질계 바이오매스 급속 열분해 모델 비교 및 검증 (Simulation and model validation of Biomass Fast Pyrolysis in a fluidized bed reactor using CFD)

  • 주영민;어승희;오광철;이강열;이범구;김대현
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.200-210
    • /
    • 2015
  • 유동층반응기에서 바이오매스 급속 열분해의 모델화를 통해 열분해로부터 발생되는 바이오오일(Bio-oil) 및 비응축 가스(Non-condensable gas) 성분의 예측과, 이를 통한 수율 향상을 목표로 한다. 본 연구의 목적은 유동층반응기 내부에 투입된 바이오매스가 급속 열분해되는 동안 발생되는 생성물의 수율 예측과 실험 및 시뮬레이션 값을 비교 및 분석하는 것이다. 급속 열분해의 시뮬레이션을 위해 전산유체역학(Computational Fluid Dynamics, CFD) 프로그램이 사용되었으며, 바이오매스의 급속 열분해의 시뮬레이션을 위해 바이오매스 하위 구성 성분의 상세한 열분해 반응 경로가 적용되었다. 이 열분해 반응은 세부적으로 셀룰로오스(Cellulose), 헤미셀룰로오스(Hemicellulose) 및 리그닌(Lignin)의 반응을 포함하고 있으며, 열분해로부터 발생되는 주요 가스 성분은 이산화탄소($CO_2$), 일산화탄소(CO), 메탄($CH_4$), 수소($H_2$), 에틸렌($C_2H_4$)이다. 본 모델의 예측치와 기존 문헌(Mellin et al., 2014)의 실험 및 시뮬레이션 결과를 비교하였으며, 그 결과, $CH_4$, $H_2$$C_2H_4$의 경우, 각각 3.7%p, 4.6%p 및 3.9%p로 비교적 일치하게 예측되었지만, $CO_2$ 및 CO의 경우, 각각 9.6%p 및 6.7%p로 높게 예측되었다. 이러한 차이가 발생하는 이유는 이차 열분해 반응에서의 세부 반응조건에 해당되는 각각의 인자의 부재에 기인한 것으로 판단된다. 연구 결과, 시뮬레이션을 통한 모델화 접근이 가능한 것으로 판단되며, 추후에 연구된 모델화를 통해 바이오오일 및 기타 성분들의 예측도 가능할 것으로 판단된다.