• Title/Summary/Keyword: ANSYS simulation

Search Result 444, Processing Time 0.028 seconds

Design, Fabrication and Performance Test of A Non-Vacuum Packaged Single Crystalline Silicon MEMS Gyroscope (대기압형 단결정 실리콘 MEMS 각속도계의 설계, 제작 및 성능 측정)

  • Jung, Hyoung-Kyoon;Hwang, Young-Seok;Sung, Woon-Tahk;Chang, Hyun-Kee;Lee, Jang-Gyu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1635-1636
    • /
    • 2006
  • In this paper, a non-vacuum packaged single crystalline silicon MEMS gyroscope is designed, fabricated and tested. To reduce air damping of the gyroscope structure for non-vacuum packaging, air damping model is used and damping is minimized by analysis. The inner and outer spring length is optimized by ANSYS simulation for rigid body motion. The gyroscope is fabricated by SiOG(Silicon On Glass) process. The performance of the gyroscope is measured to evaluate the characteristic of the gyroscope. The sensitivity, non-linearity, noise density and the bias stability are measured to 9.7693 mV/deg/s, 04265 %, 2.3 mdeg/s/rtHz and 16.1014 deg/s, respectively.

  • PDF

Optimal Design of Sheath Flow Nozzle Acceleration Section for Improving the Focusing Efficiency (집속효율 향상을 위한 외장유동노즐 가속 구간의 최적설계 연구)

  • Lee, Jin-Woo;Jin, Joung-Min;Kim, Youn-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.763-772
    • /
    • 2019
  • There is a need to use sheath flow nozzle to detect bioaerosol such as virus and bacteria due to their characteristics. In order to enhance the detection performance depending on nozzle parameters, numerical analysis was carried out using a commercial code, ANSYS CFX. Eulerian-lagrangian approach method is used in this simulation. Multiphase flow characteristics between primary fluid and solid were considered. The detection performance was evaluated based on the results of flow field in nozzle chamber such as focusing efficiency and swirl strength. In addition, Latin hypercube sampling(LHS) of design of experiment(DOE) was used for generating a near-random sampling. Then, the acceleration section is optimized using response surface method(RSM). Results show that the optimized model achieved a 6.13 % in a focusing efficiency and 11.47 % increase in swirl strength over the reference model.

Mechanical analysis of the bow deformation of a row of fuel assemblies in a PWR core

  • Wanninger, Andreas;Seidl, Marcus;Macian-Juan, Rafael
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.297-305
    • /
    • 2018
  • Fuel assembly (FA) bow in pressurized water reactor (PWR) cores is considered to be a complex process with a large number of influencing mechanisms and several unknowns. Uncertainty and sensitivity analyses are a common way to assess the predictability of such complex phenomena. To perform such analyses, a structural model of a row of 15 FAs in the reactor core is implemented with the finite-element code ANSYS Mechanical APDL. The distribution of lateral hydraulic forces within the core row is estimated based on a two-dimensional Computational Fluid Dynamics model with porous media, assuming symmetric or asymmetric core inlet and outlet flow profiles. The influence of the creep rate on the bow amplitude is tested based on different creep models for guide tubes and fuel rods. Different FA initial states are considered: fresh FAs or FAs with higher burnup, which may be initially straight or exhibit an initial bow from previous cycles. The simulation results over one reactor cycle demonstrate that changes in the creep rate and the hydraulic conditions may have a considerable impact on the bow amplitudes and the bow patterns. A good knowledge of the specific creep behavior and the hydraulic conditions is therefore crucial for making reliable predictions.

Design and Evaluation a Multi-coil Magneto-rheological Damper for Control Vibration of Washing Machine

  • Phu, Do Xuan;Park, Joon Hee;Woo, Jae Kwan;Choi, Seung Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.543-548
    • /
    • 2013
  • This paper presents a design of magnetorheological (MR) damper for control vibration of washing machine. This design is based on the requirements such as small dimensions with high damping force, and minimal consumed energy. The MR damper is designed using the shear mode of MR fluid, and Bingham plastic model is used for optimization process. In this design, a multi-coil design is adopted for damper to enhance damping force and reduce optimally structural parts. In optimization process, ADPL (Ansys Parametric Design Language) program is applied. Base on the optimal parameters, MR damper is manufactured and tested. In evaluation of MR damper, a modified sliding mode control is formulated and applied in both simulation and experiment. Results of experiment show that the MR damper satisfy the requirement of damping force for vibration control of washing machine.

  • PDF

Load/unload Dynamics of Slider on Ramp for Various Ramp Shapes (램프 형상에 대한 램프 상의 로드/언로드 동특성 해석)

  • Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Lee, Yong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1248-1254
    • /
    • 2005
  • L/UL(Load/unload) mechanism has been widely used in SFF(Small form factor) HDD because L/UL technology has many advantages such as an increase of areal density, reduction of power consumption and improvement of shock resistance. In this system, the most important design goal is no slider-disk contact and fast air-hearing breaking during L/UL process. To do so, we should consider many design parameters related to L/UL system. The ramp shape is the most dominant component among parameters which dramatically affect the L/UL performance. This paper makes an advanced ramp model using ANSYS/LS-DYNA. Through this FE model, this paper investigates the effect of initial ramp slope and location of air-bearing breaking. From the experiment for three different ramps, we also verify that experimental results agree with simulation results. We conclude that the ramp design should have small ramp slope at the moment which a suspension tap contacts with ramp and large ramp slope after air-bearing breaking in order to improve L/UL Performance.

A Piezoelectric Lens Actuator for Mobile Information Devices (모바일 기기용 렌즈 구동 압전형 액츄에이터 개발)

  • Lee, Hun-Tae;Lee, Seung-Yop;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.744-749
    • /
    • 2005
  • In this paper, a lens actuator for mobile devices is proposed using stack type piezoelectric materials. In general, the deformation of PZT actuators is not enough for lens motion when the allowed voltage is applied. The small stroke problem can be solved by accumulating a lot of small displacements in high frequency. In this paper, a new inch-worm type model for focusing actuator is suggested based on the interaction of inertial and frictional forces. Theoretical analysis and simulation using ANSYS are performed to verify the feasibility of the inch-worm PZT actuator model. Various types of clamps are considered to determine the effect of frictional force on the motion, and appropriate clamp-actuator models are proposed. The proposed models are experimentally verified and the experimental results show high correspondence with theoretical and simulated values. The inch-worm type focusing actuator enable a large stroke with 7.79 mm/sec with 10kHz and 10V.

  • PDF

Multidisciplinary Design Optimization for Acoustic Characteristics of a Speaker Diaphragm (스피커 진동판의 음향특성 다분야통합최적설계)

  • Kim, Sung-Kuk;Lee, Tae-Hee;Lee, Surk-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.763-766
    • /
    • 2004
  • Recently, various acoustic artifacts that contains speaker have been produced such as cellular phone. Speaker consists of diaphragm generating sound and coil vibrating diaphragm. Generally, good speaker means that it has a wide frequency range, high output power rate to input power and flat sound pressure level in specified frequency range. Acoustic characteristic was estimated through the experiment and computer simulation, or sound power was controlled with acoustic sensitivity in a natural frequency range fer last decade. However, the flatness of sound pressure level has not been considered to enhance the sound quality of a speaker. Tn this study, a method for speaker design is proposed for a good acoustic characteristic, which is flatness of SPL(sound pressure level) and wideness between the first and second natural frequency. SYSNOISE is used fer acoustic analysis and ANSYS is used for harmonic response analysis and modal analysis. Optimization for acoustic characteristics of a speaker diaphragm is performed using ModelCenter. All analyses are done within a frequency domain. And we confirm that the experimental and computational simulations have similar trend.

  • PDF

Numerical simulation of concrete beams reinforced with composite GFRP-Steel bars under three points bending

  • Elamary, Ahmed S.;Abd-ELwahab, Rafik K.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.937-949
    • /
    • 2016
  • Fiber reinforced polymer (FRP) applications in the structural engineering field include concrete-FRP composite systems, where FRP components are either attached to or embedded into concrete structures to improve their structural performance. This paper presents the results of an analytical study conducted using finite element model (FEM) to simulate the behavior of three-points load beam reinforced with GFRP and/or steel bars. To calibrate the FEM, a small-scale experimental program was carried out using six reinforced concrete beams with $200{\times}200mm$ cross section and 1000 mm length cast and tested under three point bending load. The six beams were divided into three groups, each group contained two beams. The first group was a reference beams which was cast without any reinforcement, the second group concrete beams was reinforced using GFRP, and the third group concrete beams was reinforced with steel bars. Nonlinear finite element simulations were executed using ANSYS software package. The difference between the theoretical and experimental results of beams vertical deflection and beams crack shapes were within acceptable degree of accuracy. Parametric study using the calibrated model was carried out to evaluate two parameters (1) effect of number and position of longitudinal main bars on beam behavior; (2) performance of concrete beam with composite longitudinal reinforcement steel and GFRP bars.

A Case Study on Engineering Failure Analysis of Link Chain

  • Kim, Tae-Gu;Lee, Seong-Beom;Lee, Hong-Chul
    • Safety and Health at Work
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Objectives: The objective of this study was to investigate the effect of chain installation condition on stress distribution that could eventually cause disastrous failure from sudden deformation and geometric rupture. Methods: Fractographic method used for the failed chain indicates that over-stress was considered as the root cause of failure. 3D modeling and finite element analysis for the chain, used in a crane hook, were performed with a three-dimensional interactive application program, CATIA, commercial finite element analysis and computational fluid dynamic software, ANSYS. Results: The results showed that the state of stress was changed depending on the initial position of the chain that was installed in the hook. Especially, the magnitude of the stress was strongly affected by the bending forces, which are 2.5 times greater (under the simulation condition currently investigated) than that from the plain tensile load. Also, it was noted that the change of load state is strongly related to the failure of parts. The chain can hold an ultimate load of about 8 tons with only the tensile load acting on it. Conclusion: The conclusions of this research clearly showed that a reduction of the loss from similar incidents can be achieved when an operator properly handles the installation of the chain.

Autofrettage effects on strength and deformation of fiber reinforced pressure vessel

  • Wang, X.;Chen, X.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.277-292
    • /
    • 2007
  • Based on the composite finite element simulation and a series of hydrostatic pressure and burst tests, autofrettage effects on strength and deformation of fiber reinforced pressure vessel with metallic liners have been studied in the paper (autofrettage: during the course of one pressure taking effect, the increasing internal stress in metallic liner can surpass the yielding point and the plastic deformation will happen, which result in that when there is no internal pressure, there are press stress in liner while tensile stress in fiber lamination). By making use of a composite finite element Ansys code and a series of experiments, the autofrettage pressure is determined in order to make the aluminium liner be totally in elastic state, under given hydrostatic test pressure. The stress intensity factors of the longitudinal crack in aluminum liner end under internal pressure and thermal loads have been computed and analyzed before and after the autofrettage processing. Through numerical calculation and experiment investigations, it is found that a correct choice for autofrettage pressure can improve the gas-tightness and fatigue strength of FRP vessel.