• 제목/요약/키워드: ANSYS CFX-10

검색결과 212건 처리시간 0.024초

CFD 해석방법을 이용한 PFA 라이닝 볼밸브의 유량계수 예측 (Prediction of the Flow Coefficient of a PFA Lined Ball Valve Using the CFD Simulation Method)

  • 전홍필;이원섭;김철수;이종철
    • 한국유체기계학회 논문집
    • /
    • 제19권4호
    • /
    • pp.35-38
    • /
    • 2016
  • A PFA lined ball valve, which is machined with fluorinated resin PFA to its inner part for improving corrosion resistance, non-stickness, heat-resistance, has been widely used in semiconductor/LCD manufacturing processes with the high purity chemicals as working fluid. Due to the safety concerns, the experiments for measuring the flow coefficient of a PFA lined ball valve should be conducted with water at room temperature according to IEC standards. However, it is required to know the real flow coefficient with the real working fluid, because the flow coefficient is critical to correctly design valves in piping system. In this study, we calculated the flow coefficient of a PFA lined ball valve 40A with hydrochloric acid ($40^{\circ}C$ 36% HCl) as the working fluid using a commercial CFD package, ANSYS CFX v15. The computational results had a good agreement with the measured data and showed a little difference between water and hydrochloric acid as the working fluid of a PFA lined ball valve.

해양플랜트의 화재 및 폭발 예측을 위한 메탄 연소의 CFD 시뮬레이션 (CFD Simulation of Methane Combustion for Estimation of Fire and Explosion in Offshore Plant)

  • 석준;정세민;박종천;백점기
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.59-68
    • /
    • 2013
  • Because of the recent increase in maritime cargo capacity, the production and price of crude oil have been rising. As oil prices have risen, many problems have occurred in the industry. To solve these problems, marine resources are being actively developed, and there has been an increase in the orders for special vessels and marine structures for the development of marine resources. However, consequently, various kinds of accidents have also occurred in these special vessels and structures. One of the major types of accidents involves fire and explosion, which cause many casualties and property damage. Therefore, various studies to estimate and prevent such accidents have been carried out. In this study, as basic research for the prevention of fire and explosion, numerical simulations on combustion were carried out by using a commercial grid generation program, Gridgen, and a CFD program, ANSYS-CFX. The influences of some parameters, such as the grid system, turbulence model, turbulent dissipation rate, and so on, on the simulation results were investigated, and optimum ones were chosen. It was found that the present results adopting these parameters agreed moderately well with other experimental and numerical ones.

서지성능 향상을 위한 원심압축기의 Bleed Slot Casing의 설계변수에 대한 해석 및 시험 평가 (Numerical and Experimental Study on the Surge Performance Improvement by the Bleed Slot Casing of a Centrifugal Compressor)

  • 김홍원;정재훈;류승협;이근식
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.22-28
    • /
    • 2015
  • The primary design goal of a compressor is focused on improving efficiency. Secondary objective is to widen the operating range of compressor. This paper presents a numerical and experimental investigation of the influence of the bleed slot on the operating range for the 1.2 MW class centrifugal compressor installed in a turbocharger. The main design parameters of the bleed slot casing are upstream slot position, inlet pipe slope, downstream slot position and width. The DOE(design of experiment) method was carried out to optimize the casing design. Numerical analyses were done by the commercial code ANSYS-CFX based on the three dimensional Reynolds-averaged Navier-Stokes equations. Results showed that efficiency and pressure ratio increased as the downstream slot position and width were smaller and the upstream position was located away from the impeller inlet. Experimental works were also done with and without the bleed slot casing. The simulation results were in good agreement with the test data. Enhancement of both the surge margin up to 26.5% and the pressure ratio with the optimized bleed slot design were achieved, compared with the surge margin of only 6.6% without the bleed slot casing.

Compressible Simulation of Rotor-Stator Interaction in Pump-Turbines

  • Yan, Jianping;Koutnik, Jiri;Seidel, Ulrich;Hubner, Bjorn
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.315-323
    • /
    • 2010
  • This work investigates the influence of water compressibility on pressure pulsations induced by rotor-stator interaction (RSI) in hydraulic machinery, using the commercial CFD solver ANSYS-CFX. A pipe flow example with harmonic velocity excitation at the inlet plane is simulated using different grid densities and time step sizes. Results are compared with a validated code for hydraulic networks (SIMSEN). Subsequently, the solution procedure is applied to a simplified 2.5-dimensional pump-turbine configuration in prototype with different speeds of sound as well as in model scale with an adapted speed of sound. Pressure fluctuations are compared with numerical and experimental data based on prototype scale. The good agreement indicates that the scaling of acoustic effects with an adapted speed of sound works well. With respect to pressure fluctuation amplitudes along the centerline of runner channels, incompressible solutions exhibit a linear decrease while compressible solutions exhibit sinusoidal distributions with maximum values at half the channel length, coinciding with analytical solutions of one-dimensional acoustics. Furthermore, in compressible simulation the amplification of pressure fluctuations is observed from the inlet of stay vane channels to the spiral case wall. Finally, the procedure is applied to a three-dimensional pump configuration in model scale with adapted speed of sound. Normalized Pressure fluctuations are compared with results from prototype measurements. Compared to incompressible computations, compressible simulations provide similar pressure fluctuations in vaneless space, but pressure fluctuations in spiral case and penstock may be much higher.

단순 형상 해양플랜트 내의 수소의 분산 시뮬레이션 (Dispersion Simulation of Hydrogen in Simple-shaped Offshore Plant)

  • 석준;허재경;박종천
    • 한국해양공학회지
    • /
    • 제27권5호
    • /
    • pp.105-114
    • /
    • 2013
  • Lots of orders of special vessels and offshore plants for developing the resources in deepwater have been increased in recent. Because the most of accidents on those structures are caused by fire and explosion, many researchers have been investigated quantitatively to predict the cause and effect of fire and explosion based on both experiments and numerical simulations. The first step of the evaluation procedures leading to fire and explosion is to predict the dispersion of flammable or toxic material, in which the released material mixes with surrounding air and be diluted. In particular turbulent mixing, but density differences due to molecular weight or temperature as well as diffusion will contribute to the mixing. In the present paper, the numerical simulation of hydrogen dispersion inside a simple-shaped offshore structure was performed using a commercial CFD program, ANSYS-CFX. The simulated results for concentration of released hydrogen are compared to those of experiment and other simulation in Jordan et al.(2007). As a result, it is seen that the present simulation results are closer to the experiments than other simulation ones. Also it seems that the hydrogen dispersion is closely related to turbulent mixing and the selection of the turbulence model properly is significantly of importance to the reproduction of dispersion phenomena.

유동 덮개 형상이 축소 APR+ 내부 유동분포에 미치는 영향에 대한 수치해석 (Numerical Analysis for the Effect of Flow Skirt Geometry on the Flow Distribution in the Scaledown APR+)

  • 이공희;방영석;우승웅;김도형;강민구
    • 설비공학논문집
    • /
    • 제25권5호
    • /
    • pp.269-278
    • /
    • 2013
  • In this study, in order to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ (Advanced Power Reactor Plus) internal flow, simulation was conducted with the commercial multi-purpose computational fluid dynamics software, ANSYS CFX V.14. In addition, among the various reactor internals, the effect of flow skirt geometry on reactor internal flow was investigated. It was concluded that the porous model for some reactor internal structures could adequately predict the hydraulic characteristics inside the reactor in a qualitative manner. If sufficient computation resource is available, the predicted core inlet flow distribution is expected to be more accurate, by considering the real geometry of the internal structures, especially located in the upstream of the core inlet. Finally, depending on the shape of the flow skirt, the flow distribution was somewhat different locally. The standard deviation of the mass flow rate (${\sigma}$) for the original shape of flow skirt was smaller, than that for the modified shape of flow skirt. This means that the original shape of the flow skirt may give a more uniform distribution of mass flow rate at the core inlet plane, which may be more desirable for the core cooling.

에어 포일 스러스트 베어링의 탑포일 경사면 형상이 유동특성에 미치는 영향에 대한 수치해석 연구 (The Effects of Inclined Foil Shape on Flow Characteristics in Air Foil Thrust Bearing Using CFD)

  • 백건웅;주원구;문형욱;황성현;정성윤;박정구
    • Tribology and Lubricants
    • /
    • 제37권4호
    • /
    • pp.117-124
    • /
    • 2021
  • In this study, we perform a 3D CFD conjugate analysis according to the shape of the foil ramp of the air foil thrust bearing, analyze the flow characteristics inside the bearing, and compare the results corresponding to the two shapes. Air has a lower viscosity than lubricating oil. Therefore, the thrust runner of the bearing must rotate at high speed to support the load. The gap between thrust runner and foil is significantly smaller than that of the oil bearing. Hence, it is crucial to analyze the complex flow characteristics inside the bearing to predict the complex flow inside the bearing and performance of the bearing. In addition, flow characteristics may appear differently depending on the ramp shape of the bearing foil, which may affect bearing performance. In this study, we numerically analyze the main flow path of air flowing into the bearing and the secondary flow path used for cooling the bearing using the commercial CFD software ANSYS CFX and compare the flow characteristics for straight and curved foil ramp shapes. Notably, there is a difference in the speed of the flowing air according to the shape of the ramp, which affects the bearing performance.

이상유동 해석을 통한 브레이징 판형 응축기 설계 연구 (Design Study of a Brazed Plate Heat Exchanger Condenser Through Two-Phase Flow Analysis)

  • 황대중;오철;박상균;지재훈;방은신;이병길
    • 신재생에너지
    • /
    • 제18권2호
    • /
    • pp.73-81
    • /
    • 2022
  • This study was aimed at designing a condenser, as a component of the organic Rankine cycle system for ships. The condenser was manufactured through press molding to achieve a bent shape to enhance the heat transfer performance, considering the shape of the heat transfer plate used in a brazing plate heat exchanger. The heat transfer plate was made of copper-nickel alloy. The required heat transfer rate for the condenser was 110 kW, and the maximum number of layers was set as 25, considering the characteristics of high-temperature brazing. Computational fluid dynamics techniques were used to perform the thermal fluid analysis, based on the ANSYS CFX (v.18.1) commercial program. The heat transfer rate of the condenser was 4.96 kW for one layer (width and length of 0.224 and 0.7 m, respectively) of the heat transfer exchanger. The fin efficiency pertaining to the heat transfer plate was approximately 20%. The heat flow analysis for one layer of the heat exchanger plate indicated that the condenser with 25 layers of heat transfer plates could achieve a heat transfer rate of 110 kW.

전산해석을 이용한 산업용 오일펌프 성능개선에 관한 연구 (A Study on Performance Improvement of Industrial Oil Pump Using Computational Analysis)

  • 김진우;이현준;공석환;이성원;정원지
    • 한국산업융합학회 논문집
    • /
    • 제25권6_2호
    • /
    • pp.1111-1117
    • /
    • 2022
  • Recently, interest in the circular economy has emerged in the industry. As a result, interest in Re-manufacturing, which makes old equipment similar to new products, is growing. In the machine tool industry with many aging equipment, the Re-manufacturing industry is essential, and among them, research on the performance improvement of gear type oil pumps was conducted. The purpose was to achieve the target performance of flow rate and volume efficiency by changing the shape of the gear pump housing clearance and inlet/outlet, and Computational Fluid Analysis and Central Composite Design were conducted using ANSYS CFX 2022 R2 and MINITAB®. The level of each determined factor was determined. 20 design points were derived, and the Flow Rate at each design point was calculated, and the Theoretical Flow Rate was calculated to obtain Volumetric Efficiency. The optimal design point was obtained when the Flow Rate was 140 lpm and the Volumetric Efficiency was maximum, the optimal design point was obtained when both were maximum, and the Surface Plot for each factor was obtained to identify the tendency.

CFD를 이용한 소형 2단 터보블로워의 공력해석 (Aerodynamic Characteristics Analysis of Small Two-Stage Turbo Blower Using CFD)

  • 서승재;류민형;조이상;조진수
    • 한국항공우주학회지
    • /
    • 제42권4호
    • /
    • pp.326-335
    • /
    • 2014
  • 터보블로워는 상대적으로 적은 체적유량에서 높은 압력이 요구되는 곳에 사용되는 대표적인 유체기계로서 다양한 산업에 응용되어 사용된다. 본 연구에서는 고속으로 회전하는 소형 2단 터보블로워의 정압상승 메커니즘을 이해하기위해, 1단 임펠러 영역과 터보블로워 전체 영역에 대해서 상용툴인 ANSYS 14.5를 이용하여 CFD해석을 수행하였다. CFD 해석과정에는 역압력 구배에 의한 유동박리 예측에 적합한 k-${\omega}$ SST 난류 모델을 적용하였다. 터보블로워의 전산해석 결과는 KS B 6311 및 KS A 0612에 따른 성능시험방법을 통하여 해석기법이 타당함을 검증하였다. CFD 해석결과 터보블로워의 압력상승은 선형적으로 나타나지 않으며, 안내깃에서의 손실과 케이싱과 임펠러 간극에서 손실이 발생하는 것으로 분석되었다. 소형 2단 터보블로워를 공력성능을 예측하기 위해서는 전체 유동영역에 대한 전산 해석이 필요하며, 실험과 전산해석의 오차에 대해 고려된 전산해석 결과가 선정되어야 한다.