• Title/Summary/Keyword: ANSYS CFX-10

Search Result 213, Processing Time 0.024 seconds

Visualization of Unsteady DC Electro-osmotic flow by using Methods of Coupling Fortran and CFX Codes (포트란-CFX 연동해석 기법을 이용한 비정상 DC 전기삼투 유동 가시화)

  • Heo, Young-Gun;Jeong, Jong-Hyeon;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.22-27
    • /
    • 2011
  • In this study, we present methods of coupling a commercial code, ANSYS CFX, and the user Fortran codes for solving an unsteady electro-osmotic flow around a pair of electrodes, receiving DC, attached to the top and the bottom walls of a two-dimensional cavity. We developed a module of Fortran programs for solving the ion-transport equations as well as the Poisson equations for the potential to be used in coupling with the CFX. We present how the developed codes are applied to solving the transient DC electro-osmotic flow problem within a simple cavity. We also address various problems encountered during the development process and explain why such problems are raised.

Comparison between a 3 Dimensional Turbulent Numerical Model and Hydraulic Experiment Model for the flow phenomenon around a Lock Gate (배수갑문 주위의 흐름현상에 대한 3차원 난류 수치모형과 수리모형실험의 비교)

  • Lee, Sang-Hwa;Jang, Eun-Cheul;Ha, Jae-Yul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.162-169
    • /
    • 2007
  • This study is focused on the comparison of a 3 dimensional numerical and hydraulic model experiment for the flow phenomenon when a lock gate is opened. The lock gate is designed to discharge the flood flow rate at $218m^3/s$ of Solicheon at the Kun Jang national industry complex. The three dimensional ${\kappa}-{\epsilon}$ turbulent model of ANSYS CFX-10 of the computational fluid dynamics(CFD) program was used. The characteristics of CFX-10 are able to be simulated effectively for turbulent flow, especially the flow separation of the boundary layer of the two phase interface of air and water. The velocity and the flow pattern of the numerical model was showed to be similar to the results of the hydraulic model experiment.

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

A Study on Characteristics of Flood Flow at a Channel Confluence Connected Asymmetrically with Four Channels (네 개의 수로가 비대칭으로 연결된 수로 합류부에서의 홍수흐름 특성에 관한 연구)

  • Jeong, Woo Chang
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.767-781
    • /
    • 2013
  • In this study, the hydraulic model experiments and numerical simulations are carried out to analyze the flood flow characteristics in and around a channel confluence connected asymmetrically with four channels. The numerical model applied in this study is ANSYS CFX (ver. 14) which is the commercial three-dimensional CFD model. As results of comparison between the measured and simulated water depth distributions in and around a channel confluence, the agreement is relatively well satisfied. It can be shown in this study that the water surface profiles in and around a channel confluence are significant different with the two channel directions in which the water are entering and increased inflow.

A Numerical Study on Propagation Characteristics of Dam-break Wave through a Porous Structure (다공성 구조물을 통과하는 댐 붕괴파의 전파특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.11-24
    • /
    • 2014
  • In this study, the characteristics of the propagation of dam-break wave through a porous structure in a water tank is numerically analyzed by using the three-dimensional numerical model (ANSYS CFX model). As results of comparison between the existing measured and simulated water depth distributions in and around a porous structure, the agreement is relatively well satisfied. Moreover, for the case of the presence in part of a porous structure in a water tank, the three-dimensional flow structure is numerically analyzed In general, compared with in the area with a porous structure, the abrupt variation of water depth occurs in the area without a porous structure. It is shown that the porous structure can play a role to decrease the abrupt variation of water depth.

CFD and surrogates-based inducer optimization

  • Kratky, Tomas;Zavadil, Lukas;Doubrava, Vit
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.213-221
    • /
    • 2016
  • Due to the nature of cavitation numerical analyses, computational optimization of a pump with respect to the cavitation properties is extremely demanding. In this paper it is shown how a combination of Transient Blade Row (TBR) method and some simplifications can be used for making the optimization process more efficient and thus possible on current generation of hardware. The aim of the paper is not the theory of hydraulic design. Instead, the practical aspects of numerical optimization are shown. This is done on an example of a radial pump and a combination of ANSYS CFX, ANSYS software tools and custom scripts is used. First, a comparison of TBR and fully-transient simulation is made. Based on the results, the TBR method is chosen and a parametric model assembled. Design of Experiment (DOE) table is computed and the results are used for sensitivity analysis. As the last step, the final design is created and computed as fully-transient. In conclusion, the results are discussed.

A numerical investigation on nonlinear behavior of fluid flow with variation of physical properties of a porous medium (다공성 매질의 물리적 특성 변화에 따른 유체흐름의 비선형 거동에 대한 수치적 분석)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.325-334
    • /
    • 2017
  • In this study, the numerical investigation of the non-linear behavior of the fluid flow with physical properties, such as porosity and intrinsic permeability of a porous medium, and kinematic viscosity of a fluid, are carried out. The applied numerical model is ANSYS CFX which is the three-dimensional fluid dynamics model and this model is verified through the application of existing physical and numerical results. As a result of the verification, the results of the pressure gradient-velocity relationship and the friction coefficient-Reynolds number relationship produced from this study show relatively good agreement with those from existing physical and numerical experiments. As a result of the simulation by changing the porosity and intrinsic permeability of a porous medium and the kinematic viscosity of a fluid, the kinematic viscosity has the biggest effect on the non-linear behavior of the fluid flow in the porous medium.

A Study on Performance Improvement of Light and Low-Noisy Standing Grinder with Vacuum Dust Collection Using a Cyclone Separator (사이클론을 활용한 경량.저소음 진공집진 스탠딩 그라인더의 성능개선에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4732-4737
    • /
    • 2011
  • A standing grinder with a vacuum dust collection, which works grinding a surface and collecting dust occurred simultaneously, is needed to clean the surface before painting, or to remove a weld bead burr in the industrial field. In recent it trends to be compact and potable with high grinding and dust collection power, and low noise. As increasing these grinding and dust collection power, the noise and weight of standing grinder occurs an important problem. To solve these problem, an efficient cyclone separator was designed and developed by Ansys-CFX analysis and experiments. A weight of the developed grinder part was 5.9kg, which can be easily handled on standing by workers. and a noise level of the developed prototype was measured 69.9 dB(A).

An Advanced Method for Behavior-Characteristics Analysis of Diesel Fuel Spray

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • In order to control emissions from engine, it is necessary to understand the mixture formation process of diesel spray. In this study, analysis of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray under a high temperature and pressure was performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the Exciplex Fluorescence Method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT), and then injection pressure was selected as an analysis parameter. Consequently, it was found that the experimental results and the numerical results are consistent with each other, and then in order to investigate the behavior characteristics of evaporative diesel spray, the effectiveness of the use of CFX of commercial code is definitely validated.

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.