• Title/Summary/Keyword: ANSYS/CFX

Search Result 266, Processing Time 0.02 seconds

ANALYSIS OF FLUID CHARACTERISTICS OF THRUST BEARING ON MILLIMETER-SCALE MICRO GAS TURBINE (초소형 가스 터빈용 스러스트 베어링 내의 유동특성 해석)

  • Seo, J.H.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.258-262
    • /
    • 2010
  • Since MEMS based micro actuators or generating devices showed high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas turbine is one of the most powerful item for replacing chemical batteries. However, due to MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is to design the proper bearing which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study of thrust bearing of 10mm diameter turbine is described. Thrust bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Relationship between bearing inlet pressure and mass flow rate and bearing force is figured while changing bearing gap and number of capillaries. The simulation results will be used for further design of micro gas turbine.

  • PDF

NUMERICAL INVESTIGATION OF THE EFFECT OF THE STAGGER ANGLE ON THE AERODYNAMIC PERFORMANCES IN THE VANED DIFFUSER OF A CENTRIFUGAL COMPRESSOR (디퓨저 깃배치각의 변화에 따른 원심압축기의 공력성능 특성에 관한 수치 연구)

  • Park, T.G.;Jung, I.S.;Chung, H.T.;Park, J.Y.;Kim, S.M.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.60-65
    • /
    • 2010
  • In the present study, the effects of the stagger angles on the aerodynamic performances in the vaned centrifugal compressor has been investigated by CFD methods. The diffuser vane angles were varied in the range of ${\pm}10$ deg. from the initial-design points. The commercial Navier-Stokes solver, ANSYS-CFX were applied to solve the impeller-diffuser flowfields. Through the numerical results, the desirable setting angles were proposed to fit the best performance to the variation of the operating conditions.

Development of Electrical and Oil Heater for Energy Saving (에너지 절감형 전기 유류 겸용 온풍기 개발)

  • Chung, Sung-Won;Kim, Dong-Keon;Gong, Sang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.38-43
    • /
    • 2011
  • This study was carried out to evaluate the structural stability of hybrid type fan heater. The evaluation of structural safety of hybrid fan heater was conducted by using Ansys Workbench and CFX-11 under the design condition. The hybrid fan heater was operated by heat transfer for heat source supplied from electric heater and combustion gas. According to result of structural analysis, the maximum equivalent stress of hybrid fan heater was 150MPa when the temperature of heat transfer fluids was $150^{\circ}C$. It was found that the hybrid fan was structurally safe because the value of maximum equivalent stress was smaller than that of yield stress of the material.

A NUMERICAL STUDY ON FLOW AND STIRRING CHARACTERISTICS IN A MICROCHANNEL WITH PERIODIC ARRAY OF CROSS BAFFLES (엇갈림 배플 구조의 마이크로 채널 내 유동 및 혼합 특성에 관한 수치해석적 연구)

  • Heo, S.G.;Kang, S.M.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.101-106
    • /
    • 2006
  • In the microfluidic devices the most important thing is mixing efficiency ol various fluids. In this study a newly designed miler is proposed to enhance the mixing effect with the purpose to apply it to microchannel mixing in a short future. This design is composed of a channel with cross baffles periodically arranged on the both bottom and top surfaces ol the channel. To obtain the yow patterns, the numerical computation was performed by using a commercial code, ANSYS CFX 10.0. To evaluate the mixing performance, we computed Lyapunov exponent and obtained Poincare sections. it was shown that our design provides the excellent mixing effect.

A NUMERICAL STUDY ON FLOW AND STIRRING CHARACTERISTICS IN A MICROCHANNEL WITH PERIODIC ARRAY OF CROSS BAFFLES (엇갈림 배플 구조의 마이크로 채널 내 유동 및 혼합 특성에 관한 수치해석적 연구)

  • Heo, S.G.;Heo, Y.G.;Heo, H.S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.159-162
    • /
    • 2006
  • In the microfluidics devices the most important thing is mixing efficiency of various fluids. In this study a newly designed mixer is proposed to enhance the mixing effect with the purpose to apply it to microchannel mixing in a short future. This design is composed of a channel with cross baffles periodically arranged on the both bottom and top surfaces of the channel. To obtain the flow patterns, the numerical computation was performed by using a commercial code, ANSYS CFX 10.0. To evaluate the mixing performance, we computed Lyapunov exponent and obtained Poincare sections.

  • PDF

Numericla Study on the Aerodynamic Performances of the Turbo Blower Using Fluid-Structure Interaction Method (유체 구조 연계 해석기법을 적용한 터보블로워 공력성능 해석에 관한 수치적 연구)

  • Park, T.G.;Chung, H.T.;Kim, H.B.;Park, J.Y.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.35-40
    • /
    • 2011
  • The present study aims at investigating the effect of the fluid-structure interaction on the aerodynamic performances in the turbo blower. The design specifications of the reference model driven by 400kW power were given as 7.43kg/s of mass flow rate, 1.66 of pressure ratio with 12000rpm of impeller rotating speed. Numerical simulation has been performed on the three cases based on the tip clearance between the impeller blade and the shroud. The CFX-turbo for flow fields and ANSYS-mechanical for structure domain were applied to solve the present FSI problems inside the turbo blower. Through the numerical results, the performances corrected by the FSI effects were proposed for the more reliable predictions.

Design of Impeller and Diffuser for Mixed Flow Pump with Inverse Design Method (역설계 방법을 적용한 사류펌프의 임펠러 및 디퓨저 설계)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Kim, Jun-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1322-1325
    • /
    • 2009
  • The impeller and vane diffuser for the mixed flow pump(NS550) was designed by using meridional selection program and inverse design method. We decided the meridional shape of the impeller from the meridional design parameter, such as the specific speed and maximum diameter at the impeller exit. The meridional shape of vane diffuser was set from the impeller shape, distribution of cross sectional area and maximum diffuser diameter. The angle of impeller blade and diffuser vane was designed by using inverse design method. The predicted overall performance by using commercial CFD code(ANSYS CFX-11) shown good agreement with design goals.

  • PDF

A COMPUTATIONAL STUDY ON PERFORMANCE OF THE DENTAL AIR MOTOR HAND-PIECE USING MOVING MESH METHOD (무빙메시를 이용한 치과 치료기기용 에어모터 핸드피스의 선응에 관한 수치해석적 연구)

  • Sung, Y.J.;Ryu, K.J.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.572-578
    • /
    • 2011
  • The vane type air-motor hand-piece is used widely in the dental services. There are a lot of experimental studies about air-motor but eccentrically off not many numerical studies by using Computational Fluid Dynamics. An air-motor has rotor which rotates at the center of inner housing. The retractable vanes are installed on the rotor. As the rotor of the air-motor rotates, vanes move up and down straightly in the radial direction along the guide. Therefore we have to analyze the unsteady flow field by accurate time dependent marching technique. ANSYS 12.0 CFX is used to analyze unsteady vane-motor flow field Analysis of the changing control volume inside air-motor is implemented by user-defined functions and moving mesh options. Rotational speed of the rotor is approximately 23,000rpm.

  • PDF

Application of CFD to tile Calculation of 2 Phase Cryogenic Heat Transfer Processes (2상 극저온 열전달 과정 계산에서의 CFD 응용)

  • Liu, Jie.;Yue, Haibo;Chung, Mo;Bai, Cheol-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.141-147
    • /
    • 2011
  • A two-phase numerical model for plate-fin heat exchangers with plain fins and wave fins is studied incorporating the thermodynamic properties and the characteristics of fluid flow. The numerical simulations for the two fins in cryogenic conditions are earned out by employing a homogenous two-phase flow model with the CFD code ANSYS CFX. The heat transfer coefficients and the friction factor for nitrogen saturated vapor condensation process inside two types of plate fin heat exchanger are evaluated including the effects of saturation temperature (pressure), mass flow rate and inlet vapor quantity. The convective heat transfer coefficients and friction factors will be used for design of plate-fin type heat exchangers operating under cryogenic conditions.

  • PDF

A NUMERICAL STUDY OF VANE TYPE DENTAL AIR-MOTOR WITH 7MINI HOLE OF AIR-OUTLETS (치과 치료기기용 에어모터 핸드피스의 출구 다공망에 대한 수치 해석적 연구)

  • Kim, Jae-Wook;Kim, Sung-Rae;Ryu, Kyung-Jin;Song, Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.529-534
    • /
    • 2011
  • The air-motor unit of the hand-piece had not been developed inside of the country yet. Therefore it needs some research works. The objective of this study is to investigate the effect of the many mini holes at the outle of the air-motort. The flow fields analysis has been conducted by the immersed solid method using ANSYS 12.0 CFX.

  • PDF