• 제목/요약/키워드: ANNs

검색결과 184건 처리시간 0.032초

Fragility assessment of RC bridges using numerical analysis and artificial neural networks

  • Razzaghi, Mehran S.;Safarkhanlou, Mehrdad;Mosleh, Araliya;Hosseini, Parisa
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.431-441
    • /
    • 2018
  • This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.

Modal parameters based structural damage detection using artificial neural networks - a review

  • Hakim, S.J.S.;Razak, H. Abdul
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.159-189
    • /
    • 2014
  • One of the most important requirements in the evaluation of existing structural systems and ensuring a safe performance during their service life is damage assessment. Damage can be defined as a weakening of the structure that adversely affects its current or future performance which may cause undesirable displacements, stresses or vibrations to the structure. The mass and stiffness of a structure will change due to the damage, which in turn changes the measured dynamic response of the system. Damage detection can increase safety, reduce maintenance costs and increase serviceability of the structures. Artificial Neural Networks (ANNs) are simplified models of the human brain and evolved as one of the most useful mathematical concepts used in almost all branches of science and engineering. ANNs have been applied increasingly due to its powerful computational and excellent pattern recognition ability for detecting damage in structural engineering. This paper presents and reviews the technical literature for past two decades on structural damage detection using ANNs with modal parameters such as natural frequencies and mode shapes as inputs.

Predicting compressive strength of bended cement concrete with ANNs

  • Gazder, Uneb;Al-Amoudi, Omar Saeed Baghabara;Khan, Saad Muhammad Saad;Maslehuddin, Mohammad
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.627-634
    • /
    • 2017
  • Predicting the compressive strength of concrete is important to assess the load-carrying capacity of a structure. However, the use of blended cements to accrue the technical, economic and environmental benefits has increased the complexity of prediction models. Artificial Neural Networks (ANNs) have been used for predicting the compressive strength of ordinary Portland cement concrete, i.e., concrete produced without the addition of supplementary cementing materials. In this study, models to predict the compressive strength of blended cement concrete prepared with a natural pozzolan were developed using regression models and single- and 2-phase learning ANNs. Back-propagation (BP), Levenberg-Marquardt (LM) and Conjugate Gradient Descent (CGD) methods were used for training the ANNs. A 2-phase learning algorithm is proposed for the first time in this study for predictive modeling of the compressive strength of blended cement concrete. The output of these predictive models indicates that the use of a 2-phase learning algorithm will provide better results than the linear regression model or the traditional single-phase ANN models.

Nano-delamination monitoring of BFRP nano-pipes of electrical potential change with ANNs

  • Altabey, Wael A.;Noori, Mohammad;Alarjani, Ali;Zhao, Ying
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.1-13
    • /
    • 2020
  • In this work, the electrical potential (EP) technique with an artificial neural networks (ANNs) for monitoring of nanostructures are used for the first time. This study employs an expert system to identify size and localize hidden nano-delamination (N.Del) inside layers of nano-pipe (N.P) manufactured from Basalt Fiber Reinforced Polymer (BFRP) laminate composite by using low-cost monitoring method of electrical potential (EP) technique with an artificial neural networks (ANNs), which are combined to decrease detection effort to discern N.Del location/size inside the N.P layers, with high accuracy, simple and low-cost. The dielectric properties of the N.P material are measured before and after N.Del introduced using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to N.Del, a finite element (FE) simulation model for N.Del location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic, therefore, FE analyses are employed to make sets of data for the learning of the ANNs. The method is applied for the N.Del monitoring, to minimize the number of FE analysis in order to keep the cost and save the time of the assessment to a minimum. The FE results are in excellent agreement with an ANN and the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.

Application of the Artificial Neurons Networks for Runoff Forecasting in Sungai Kolok Basin, Southern Thailand

  • Mama, Ruetaitip;Namsai, Matharit;Choi, Mikyoung;Jung, Kwansue
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.259-259
    • /
    • 2016
  • This study examined Artificial Neurons Networks model (ANNs) for forecast flash discharge at Southern part of Thailand by using rainfall data and discharge data. The Sungai Kolok River Basin has meant the border crossing between Thailand and Malaysia which watershed drains an area lies in Thailand 691.88 square kilometer from over all 2,175 square kilometer. The river originates in mountainous area of Waeng district then flow through Gulf of Thailand at Narathiwat Province, which the river length is approximately 103 kilometers. Almost every year, flooding seems to have increased in frequency and magnitude which is highly non-linear and complicated phenomena. The purpose of this study is to forecast runoff on Sungai Kolok at X.119A gauge station (Sungai Kolok district, Narathiwat province) for 3 days in advance by using Artificial Neural Networks model (ANNs). 3 daily rainfall stations and 2 daily runoff station have been measured by Royal Irrigation Department and Meteorological Department during flood period 2000-2014 were used as input data. In order to check an accuracy of forecasting, forecasted runoff were compared with observed data by pursuing Coefficient of determination ($R^2$). The result of the first day gets the highest accuracy and then decreased in day 2 and day 3, consequently. $R^2$values for first day, second day and third day of runoff forecasting is 0.71, 0.62 and 0.49 respectively. The results confirmed that the ANNs model can be used when the range of collected dataset is short and real-time operated. In conclusion, the ANNs model is suitable to runoff forecasting during flood incident of Sungai Kolok river because it is straightforward model and require with only a few parameters for simulation.

  • PDF

AN IMPLEMENTATION AND EVALUATION OF RANDOMIZED-ANN SIMULATOR USING A PC CLUSTER

  • Morita, Yoshiharu;Nakagawa, Tohru;Kitagawa, Hajime
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.99-102
    • /
    • 2001
  • We propose a PC cluster using general-purpose microprocessors and a high-speed network for simulating ANN (Artificial Neural Network) processes on Linux OS. We apply this cluster to intelligent information processing such as ANN simulation. The elapsed time for simulating ANNs can be reduced from 7,295 seconds by a PE (Processing Element) to 1,226 seconds by six PEs. The reliability of a pattern-classification using ANNs can be improved by the proposed ANN, Randomized-ANN. In order to generate a Randomized-ANN, we choose three ANNs and combine the output results from three huts by means of logical AND. Results are as follows: The mean correct answer rate is 94.4%, the mean wrong answer rate is only 0.1 %, and the mean unknown answer rate is 5.5 %. We make sure that Randomized-ANN approach reduces the mean wrong answer rate within a tenth part and improves the reliability of Japanese coin classification.

  • PDF

터널거동 평가에서의 인공신경망 활용기법 연구 (Prediction of Tunnel Behavior Using Artificial Neural Network)

  • 유충식;김주미
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1324-1334
    • /
    • 2005
  • This study investigated the applicability of the Artificial Neural Network (ANN) technique for prediction of tunnel behavior. For training data collection, a series of finite element analyses were conducted for actual tunnel project site. Using the data, optimimzed ANNs were developed through a sensitivity study on internal parameters. The developed ANNs can make tunneling related predictions such as tunnel crown settlement, shotcrete lining stress, ground surface settlement, and groundwater inflow rate. The results indicated that the developed ANNs can be used as an effective and efficient tool for tunnelling related prediction in practical tunneling situations.

  • PDF

신경망을 이용한 Combline 공진기 내의 전계결합 프로브 설계 모델 (Design Models for Electric Coupling Probe in Combline Resonators Using Neural Network)

  • 김병욱;김영수
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2002년도 종합학술발표회 논문집 Vol.12 No.1
    • /
    • pp.366-369
    • /
    • 2002
  • Two artificial neural networks (ANN) are used to model the electric coupling probe in the combline resonators. One is used to analyze and synthesize the electric probe, and the other is used to correct errors between the results of the analysis and the synthesis ANNs and the fabrication results. The ANNs for the analysis and the synthesis of the electric probe are trained using the physical dimensions of the electric probe and the corresponding coupling bandwidth which is obtained using the finite element method. The ANNs for the error correction are trained using a very small set of the measurement results. Once trained, the ANN models provide the correct result approaching the accuracy of the measurement. The results from the ANN models show fairly good agreement with those of the measurement and they can be used as good initial design values.

  • PDF

정보기술(IT)의 터널 설계 분야에의 적용사례 (Application of Information Technology in Tunnel Design - A case study)

  • 유충식;김주미;김진하
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.105-116
    • /
    • 2005
  • This study investigated the applicability of the Artificial Neural Network(ANN) technique for prediction of tunnel behavior. For training data collection, a series of finite element analyses were conducted for actual tunnel project site. Using the data, optimimzed ANNs were developed through a sensitivity study on internal parameters. The developed ANNs can make tunneling related predictions such as tunnel crown settlement, shotcrete lining stress, ground surface settlement, and groundwater inflow rate. The results indicated that the developed ANNs can be used as an effective and efficient tool for tunnelling related prediction in practical tunneling situations.

  • PDF

ANN Synthesis Models Trained with Modified GA-LM Algorithm for ACPWs with Conductor Backing and Substrate Overlaying

  • Wang, Zhongbao;Fang, Shaojun;Fu, Shiqiang
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.696-705
    • /
    • 2012
  • Accurate synthesis models based on artificial neural networks (ANNs) are proposed to directly obtain the physical dimensions of an asymmetric coplanar waveguide with conductor backing and substrate overlaying (ACPWCBSO). First, the ACPWCBSO is analyzed with the conformal mapping technique (CMT) to obtain the training data. Then, a modified genetic-algorithm-Levenberg-Marquardt (GA-LM) algorithm is adopted to train ANNs. In the algorithm, the maximal relative error (MRE) is used as the fitness function of the chromosomes to guarantee that the MRE is small, while the mean square error is used as the error function in LM training to ensure that the average relative error is small. The MRE of ANNs trained with the modified GA-LM algorithm is less than 8.1%, which is smaller than those trained with the existing GA-LM algorithm and the LM algorithm (greater than 15%). Lastly, the ANN synthesis models are validated by the CMT analysis, electromagnetic simulation, and measurements.