• 제목/요약/키워드: ANNUAL MEAN TEMPERATURE

Search Result 348, Processing Time 0.029 seconds

Observations of the Cheju Current

  • Suk, Moon-Sik;Pang, Ig-Chan;Teague, William J.;Chang, Kyung-Il
    • Journal of the korean society of oceanography
    • /
    • v.35 no.3
    • /
    • pp.129-152
    • /
    • 2000
  • The Cheju Current (CC), defined here as a mean eastward flow in the Cheju Strait, mostly carries water of high temperature and salinity originating from the Kuroshio in winter and spring, the Cheju Warm Current Water (CWCW). The strong core of the eastward component of the CC is found close to Cheju Island (Cheju-Do, hereafter) in winter and spring with a peak speed of about 17.0 cm/s. The eastward flow weakens towards the northern Cheju Strait, and a weak westward flow occurs occasionally close to the southern coast of Korea. The volume transport ranges from 0.37 to 0.45 Sv(1 Sv=10$^6$ m$^3$/s) in winter and spring. Seasonal thermocline and harocline are formed in summer and eroded in November. The occurrence of the CWCW is confined in the southern Cheju Strait close to Cheju-Do below the seasonal thermocline in summer and fall, and cold water occupies the lower layer north of the CWCW which is thought to be brought into the area from the area west of Cheju-Do along with the CWCW. Stratification acts to increase both the speed of the CC with a peak speed of greater than 30 cm/s and the vertical shear of the along-strait currents. The strong core of the CC detached from the coast of Cheju-Do and shifted to the north during the stratified seasons. The volume transport in summer and fall ranges 0.510.66 Sv, which is about 1.5 times larger than that in winter and spring. An annual cycle of the cross-strait sea level difference shows its maximum in summer and fall and minimum in winter and spring, whose tendency is consistent with the annual variability of the CC and its transport estimated from the ADCP measurements. Moored current measurements west of Cheju-Do indicate the clockwise turning of the CC, and the moored current measurements in the Cheju Strait for 1530 days show the low-frequency variability of the along-strait flow with a period of about 37 days.

  • PDF

Distributions and Origins of PM10 in Jeollabuk-do from 2010 to 2015 (2010~2015년 전라북도 도시대기 PM10의 특성)

  • Cho, Byeongsu;Song, Mijung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.251-264
    • /
    • 2017
  • Recently, Jeollabuk-do has been reported as a province where the $PM_{10}$concentration is one of the highest levels in South Korea. To explore the characteristics and origins of the $PM_{10}$in Jeollabuk-do, we present one of the first long-term datasets including a statistical analysis of $PM_{10}$concentrations obtained from six cities in the province from 2010 to 2015. During the entire periods, the mean hourly $PM_{10}$concentration was $49.3{\mu}g/m^3$, which correspond to the annual ambient air quality standards for $PM_{10}$in South Korea, and the annual $PM_{10}$concentration of each city showed a similarity in year-to-year variations. In the monthly variation of $PM_{10}$, the $PM_{10}$concentrations showed a maximum value in May that was one of the top levels among the provinces of Korea while the concentrations were dramatically decreased in August showing one of the lowest levels among the provinces in Korea. For the diurnal variation of $PM_{10}$, the $PM_{10}$concentration was enhanced during the rush hours together with gaseous species of $NO_2$, and CO. When the high concentrations of $PM_{10}$were observed (the highest 10% of the $PM_{10}$mass contribution), temperature and relative humidity were low. Using HYSPLIT backward trajectories and cluster analysis for the high $PM_{10}$concentrations, we found that the pollution plumes were transported mainly from China.

Dominant causes on the catch fluctuation of a set net fishery in the mid-south sea of Korea (남해 중부해역 정치망어업 어획량 변동의 원인)

  • Kim, Heeyong;Song, Se Hyun;Lee, Sunkil;Kim, Jong-Bin;Yoo, Joon-Taek;Jang, Dae-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.3
    • /
    • pp.250-260
    • /
    • 2013
  • The annual and monthly fluctuation in the species composition and the catch abundance of dominant species were analyzed using the daily sales slip catch data by a set net in the offshore waters off Dolsan Island in Yeosu from March 2004 to December 2011. Mean catch from 2004 to 2011 is 372M/T and the maximum and the minimum catch are 526 M/T in 2005 and 27 2M/T in 2009, respectively. The dominant species were Engraulis japonicus mainly in spring and Scomberomorous niphonius in Autumn and therefore the set net catch that is dominated by S. niphonius's catch was much higher in autumn than in spring. Through comparative analyses for the environmental factors to the annual catch fluctuation, it is revealed that the water temperature variation affected the recruitment property of S. niphonius to the fishing ground but the effect of typhoon on the catch fluctuation was not distinct. Furthermore, the big blooming event of jellyfish, particularly Nemopilema nomurai, that occurred in 2009 showed a tendency of faster appearance and later extinction until December. The occurring characteristic of N. nomurai became a direct cause that brought about the lowest total catch in 2009 since the dominant species catch of the set net fishery was concentrated mostly in Autumn.

Comparisons of Biomass, Productivity and Productive Structure between Korean Alder and Oak Stands (물오리나무와 상수리나무숲의 생산력 비교)

  • Myung In Chae;Joon Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.1 no.2
    • /
    • pp.57-65
    • /
    • 1977
  • The biomass and net production of alder and oak trees was estimated by allometric method. The productivity of the two stands of alder and oak was obviously different judging from the rate of photosynthesis productive structure and vertical distribution of light. The amounts of net photosynthesis under the saturated light were 2.31, 1.42mg $CO_2/dm^2\cdot$hr. in the sun and shade leaves of alder tree and 1.58, 0.84mg $CO_2/dm^2\cdot$hr in that of the oak, respectively. Total annual respiration loss calculated from the respiration measured at $25^{\circ}C$ and the mean air temperature from every 10 days were 13.56ton/ha.yr in the alder stand and 19.83 ton/ha.yr in the oak. The productive structure and the vertical distribution of light in the stand were assumedly more effective to produce dry matter in the oak stand than in the alder. The biiomasses measured in 1975 and 1976 were 51.51 and 56.82 ton/ha in the alder stand and 73.35, 86.77 ton/ha in the oak one, respectively. Annual net production and gross production were 8.56 and 22.12 ton/ha.yr in the alder stand but those were 17.90 and 37.74 ton/ha.yr in the oak stand. The ratios of respiration to gross procution (R/Pg) were prespectively 0.61 and 0.53 inthe alder and oak stands. Efficiencies of solar energy utilizaztion of net production during the growing season(May-Oct.) were 0.67 and 1.40% and those of gross production were 1.72 and 2.94% in the alder and oak stands respectively.

  • PDF

Variations of Sea Level and Sea Surface Temperature in the Korea seas Peninsula using Satellite Data(Topex/Poseidon and NOAA) (위성자료(Topex/Poseidon, NOAA)를 이용한 한반도 주변해역의 해수면 및 해수온변화 연구)

  • Yoon Hong-Joo;Cho Han-Keun;Lee Bong-Sic;Jeong Young-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.485-488
    • /
    • 2006
  • SLA and SST is high in summer and fall, it is low in spring and winter. The clearly annual period shows through the power spectrum density. A semi-annual period and seasonal period appeared, In. At sea surface variation of satellite data(Mean Sea Level Anomaly) and in-situ data, coefficient-correlation show 0.323 at Mukho which is located in the coastal. Chujado and Ulleungdo is a 0.685 and 0.780, retentively. A coefficient-correlation of SST show higher than sea surface variation as Mukho-0.920, Chujado-0.894 and Ulleungdo-0.815. A comparison between SST and MSLA show 0.77, SST appeared faster about 1 to 3 months than MSLA.

  • PDF

Accessing socio-economic and climate change impacts on surface water availability in Upper Indus Basin, Pakistan with using WEAP model.

  • Mehboob, Muhammad Shafqat;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.407-407
    • /
    • 2019
  • According to Asian Development Bank report Pakistan is among water scarce countries. Climate scenario on the basis IPCC fifth assessment report (AR5) revealed that annual mean temperature of Pakistan from year 2010-2019 was $17C^o$ which will rise up to $21C^o$ at the end of this century, similarly almost 10% decrease of annual rainfall is expected at the end of the century. It is a changing task in underdeveloped countries like Pakistan to meet the water demands of rapidly increasing population in a changing climate. While many studies have tackled scarcity and stream flow forecasting of the Upper Indus Basin (UIB) Pakistan, very few of them are related to socio-economic and climate change impact on sustainable water management of UIB. This study investigates the pattern of current and future surface water availability for various demand sites (e.g. domestic, agriculture and industrial) under different socio-economic and climate change scenarios in Upper Indus Basin (UIB) Pakistan for a period of 2010 to 2050. A state-of-the-art planning tool Water Evaluation and Planning (WEAP) is used to analyze the dynamics of current and future water demand. The stream flow data of five sub catchment (Astore, Gilgit, Hunza, Shigar and Shoyke) and entire UIB were calibrated and validated for the year of 2006 to 2011 using WEAP. The Nash Sutcliffe coefficient and coefficient of determination is achieved ranging from 0.63 to 0.92. The results indicate that unmet water demand is likely to increase severe threshold and the external driving forces e.g. socio-economic and climate change will create a gap between supply and demand of water.

  • PDF

Long-term Variation of the Freezing Climate near the Han River and Seoul in Korea (서울 관측소와 한강 결빙 기후의 장기 변동)

  • Oh, Su-Bin;Byun, Hi-Ryong
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.761-769
    • /
    • 2011
  • Daily minimum temperature and freezing data of the Seoul weather station ($37^{\circ}$34'N, $126^{\circ}$57'E, Songwol-dong Jongno-gu Seoul, hereinafter Songwol) and freezing data of the Han River station ($37^{\circ}$30'N, $126^{\circ}$57'E, hereinafter Han River) were used to study the long-term variation of the freezing climate for Seoul, Korea, for the period of 100 years from 1907 to 2006. 'Freezing' of Songwol is defined that the water in outdoor fields is frozen, and 'freezing' of the Han River located 6 km away from Songwol is defined as the region 100 meters upstream of the second and fourth piers in the south end of the Han River Bridge is fully frozen. The mean first freezing date for Songwol was October 28, and one for Han River was December 28; these showed a late tendency, with the rate of 0.78 days $decade^{-1}$ and 3.47 days $decade^{-1}$, respectively. The mean annual freezing days was 159.06 days for Songwol and 50.33 days for Han River; each showed a $decade^{-1}$shorter tendency, with rates of 2.01 days $decade^{-1}$ and 5.24 days $decade^{-1}$, respectively. All the seven no-freezing years (1960, 1971, 1972, 1978, 1988, 1991, and 2006) for Han River came after 1950. The mean daily minimum temperatures of the first freezing dates for Songwol and Han River were $0.55^{\circ}C$ and $-12.22^{\circ}C$. The first freezing occurred after 6.43 days for Songwol and after 8.94 days for Han River with daily minimum temperature below $0^{\circ}C$. The annual minimum temperatures of Songwol and Han River exhibited positive correlations with the first freezing date and negative correlations with freezing days. The result shows that the freezing climate change is relevant to temperature change and is a part of overall climate change. By conducting additional studies with various methods and wider region, we will be able to monitor the freezing climate.

Variation of leaf morphology among 18 populations of Zelkova serrata Mak. (느티나무 18개 집단의 엽 형질 변이)

  • Kim, In-Sik;Kwon, Hae-Yun;Ryu, Keun-Ok;Choi, Hyung-Soon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.40-49
    • /
    • 2010
  • This study was conducted to examine genetic variation on leaf characteristics of Zelkova serrata populations. Leaf samples were obtained from eighteen populations and fourteen leaf characteristics such as leaf blade length, leaf width, leaf area and etc. were measured. In all leaf characteristics, there were significant differences among populations and among individuals within population. Most variance of leaf characteristics was contributed to among individuals within population except for length from leaf base to maximum width (x3) and the ratio of x3 to leaf blade length (x10). The relatively high variations of leaf characteristics were found at Gurye, Jungeup and Gyungju populations while Youngwol, Cheongsong, Youngchun populations showed the lower variation. There was high correlation among leaf characteristics related to leaf size, but not among the variables of ratio between leaf characteristics. Length from leaf base to maximum width(x3) and the ratio of x3 to x10 showed significant positive correlation with latitude and altitude of populations, which reflect the differences of mean annual temperature among populations. Mean annual rainfall of populations showed negative correlation with leaf blade length, leaf width, length from apex to first serration and leaf area. Four principal components (PC) were deduced from principal component analysis, which explain the 88.5% of total variance of leaf characteristics. Leaf area, length from leaf base to maximum width, serration number and petiole length showed the highest contribution to PC1, PC2, PC3, PC4, respectively. According to cluster analysis, the populations of Z. serrata were divided into two groups, which reflect the difference of mean annual temperature between groups. Within group, however, specific tendency of clustering was not observed among populattions.

Analysis of Hydraulic Characteristics of Yeongsan River and Estuary Using EFDC Model (EFDC-NIER 모델을 이용한 영산강 하구 물흐름 특성 분석)

  • Shin, Chang Min;Kim, Darae;Song, Yongsik
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.580-588
    • /
    • 2019
  • The flow of the middle and downstream of the Yeongsan River is stagnant by two weirs of Seungchon and Juksan and the estuary dam and maintained in freshwater. In this study, the Environmental Fluid Dynamics Code-National Institute of Environment Research(EFDC-NIER) model was applied to the Yeongsan River to simulate water flow, temperature, and salinity stratification. The EFDC-NIER model is an improved model which can simulate multi-functional weirs operation, multiple algal species, and the vertical movement mechanism of algal based on the EFDC model. The simulation results for the water level, water temperature, velocity, and salinity reproduced the observed values well. The mean absolute error(MAE) of the model calibration in the annual variations of the water level was 0.1-0.3 m, water temperature was 0.8-1.7 ℃, velocity was 4.5-7.1 cm/sec, and salinity was 1.5 psu, respectively. In the case of scenario simulation for the full opening of the estuary dam, the water level of the estuary dam was directly impacted by the tide so it was predicted to rise - 1.35 m to 0.2 m on average sea level. The velocity was also predicted to increase from 2.7 cm/sec to 50.8 cm/sec, and the flow rate to increase from 53 ㎥/sec to 5,322 ㎥/sec.

Climate Change Concerns in Mongolia

  • Dagvadorj, D.;Gomboluudev, P.;Natsagdorj, L.
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.47-54
    • /
    • 2003
  • Climate of Mongolia is a driven force on natural conditions as well as socio-economic development of the country. Due to the precariousness of climate conditions and traditional economic structure, natural disasters, specially disasters of meteorological and hydrological origin, have substantial effect upon the natural resources and socio-economic sectors of Mongolia. Mongolia's climate is characterized by high variability of weather parameters, and high frequency and magnitude of extreme climate and weather events. During the last few decades, climate of the country is changing significantly under the global warning. The annual mean air temperature for the whole territory of the country has increased by $1.56^{\circ}C$ during the last 60 years,. The winter temperature has increased by $1.56^{\circ}C$. These changes in temperature are spatially variable: winter warming is more pronounced in the high mountains and wide valleys between the mountains, and less so in the steppe and Gobi regions. There is a slight trend of increased precipitation during the last 60 years. The average precipitation rate is increased during 1940-1998 by 6%. This trend is not seasonally consistent: while summer precipitation increased by 11 %, spring precipitation decreased by 17. The climate change studies in Mongolia show that climate change will have a significant impact on natural resources such as water resources, natural rangeland, land use, snow cover, permafrost as well as major economic activities of arable farming, livestock, and society (i.e. human health, living standards, etc.) of Mongolia. Therefore, in new century, sustainable development of the country is defined by mitigating and adaptation policies of climate change. The objective of the presentation is to contribute one's idea in the how to reflect the changes in climate system and weather extreme events in the country's sustainable development concept.

  • PDF