Variation of leaf morphology among 18 populations of Zelkova serrata Mak.

느티나무 18개 집단의 엽 형질 변이

  • Kim, In-Sik (Dept. Forest Resources Development, Korea Forest Research Institute) ;
  • Kwon, Hae-Yun (Dept. Forest Resources Development, Korea Forest Research Institute) ;
  • Ryu, Keun-Ok (Dept. Forest Resources Development, Korea Forest Research Institute) ;
  • Choi, Hyung-Soon (Dept. Forest Resources Development, Korea Forest Research Institute)
  • 김인식 (국립산림과학원 산림자원육성부) ;
  • 권해연 (국립산림과학원 산림자원육성부) ;
  • 유근옥 (국립산림과학원 산림자원육성부) ;
  • 최형순 (국립산림과학원 산림자원육성부)
  • Received : 2009.12.02
  • Published : 20100300

Abstract

This study was conducted to examine genetic variation on leaf characteristics of Zelkova serrata populations. Leaf samples were obtained from eighteen populations and fourteen leaf characteristics such as leaf blade length, leaf width, leaf area and etc. were measured. In all leaf characteristics, there were significant differences among populations and among individuals within population. Most variance of leaf characteristics was contributed to among individuals within population except for length from leaf base to maximum width (x3) and the ratio of x3 to leaf blade length (x10). The relatively high variations of leaf characteristics were found at Gurye, Jungeup and Gyungju populations while Youngwol, Cheongsong, Youngchun populations showed the lower variation. There was high correlation among leaf characteristics related to leaf size, but not among the variables of ratio between leaf characteristics. Length from leaf base to maximum width(x3) and the ratio of x3 to x10 showed significant positive correlation with latitude and altitude of populations, which reflect the differences of mean annual temperature among populations. Mean annual rainfall of populations showed negative correlation with leaf blade length, leaf width, length from apex to first serration and leaf area. Four principal components (PC) were deduced from principal component analysis, which explain the 88.5% of total variance of leaf characteristics. Leaf area, length from leaf base to maximum width, serration number and petiole length showed the highest contribution to PC1, PC2, PC3, PC4, respectively. According to cluster analysis, the populations of Z. serrata were divided into two groups, which reflect the difference of mean annual temperature between groups. Within group, however, specific tendency of clustering was not observed among populattions.

느티나무를 용재자원으로 육성하기 위한 연구의 일환으로 전국 18개 집단에 대한 엽 형질 변이를 조사하였다. 엽신장, 엽폭 등 14개 엽 형질을 조사한 결과, 모든 측정형질에서 집단 간 및 집단 내 개체 간에 고도로 유의한 차이가 있는 것을 확인하였으며 특히, 최대 엽폭까지의 길이(x3)와 최대 엽폭까지의 길이/엽신장(x10)은 집단 내 개체 간 보다 집단 간의 변이가 더 큰 것으로 나타났다. 집단별로 보면 측정형질에 따라 차이가 있지만 평균적으로 구례, 정읍, 경주 집단의 변이가 컸으며 영월, 청송, 영천 집단은 변이가 작은 편이었다. 엽 형질간의 상관을 분석한 결과, 엽 크기 관련 형질들 간에는 상관이 높았으나 엽형지수간에는 상관이 낮았다. 환경요인과의 상관을 분석한 결과, 최대 엽폭까지의 길이(x3)와 최대 엽폭까지의 길이/엽신장(x10)는 위도, 해발고와 유의한 정의 상관을 나타냈는데 이는 집단별 연평균 기온의 차이가 반영된 것으로 보인다. 한편, 연평균 강수량은 엽신장(x1), 엽폭(x2), 엽두에서 첫 번째 거치까지의 길이(x5) 및 엽면적(x8)과 낮은 부의 상관을 나타냈는데 조사대상 집단들이 대부분 계곡부에 위치하고 있기 때문에 강수량이 많을 경우 잎 발달에 부정적인 영향을 미친 것으로 판단된다. 주성분 분석을 통해 고유값 1.0이상으로 의미를 갖는 4개 주성분을 도출하였는데 전체 분산에 대한 설명력은 88.5%였다. 제1주성분은 엽면적(x8), 제2주성분은 최대 엽폭까지의 길이(x3), 제3주성분은 거치수(x6), 제4 주성분은 엽병장(x4)의 기여도가 가장 높았다. 유집분석 결과, 느티나무 집단은 크게 두 개의 분지군으로 나뉘었는데 이는 분지군 간의 연평균기온의 차이가 반영된 결과로 보인다. 그러나 동일 분지군 내 집단들의 유집 결과에서는 지리적 거리 또는 환경구배에 따른 경향성이 나타나지 않았다.

Keywords

References

  1. Ahn YS, Kim SH, Jung HK, Jang YS, Choi YC and Oh KI. 2002. The variation of leaf characters among natural populations of Kalopanax septemlobus Koidz. Jour. Korean For. Soc. 91(6):755-764.
  2. Calagari M, Modirrnhmali AR and Asadi F. 2006. Morphological variation in leaf traits of Populus euphratica Oliv. natural populations. International Journal of Agriculture and Biology 6:754-758.
  3. Cunningham SA, Summerhayes B and Westoby M. 1999. Evolutionary divergences in leaf structure and chemistry. comparing rainfall and soil nutrient gradients. Ecology 69:569-588.
  4. Dancik BP and Bames BV. 1975. Leaf variability in yellow bireh (Betula alleghaniensis) in relation to environment. Can. J. For. Res. 5(2):149-159. https://doi.org/10.1139/x75-021
  5. Fonseca CR, Overton JM, Collins B and Westoby M. 2000. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88:964-977. https://doi.org/10.1046/j.1365-2745.2000.00506.x
  6. Goodall-Copestake WP., Hollingsworth ML, Hollingsworth PM, Jenkins GL and Collin E. 2005. Molecular markers and ex situ conservation of thc European elms (Ulmus spp.). Biological Conservation 122:537-546. https://doi.org/10.1016/j.biocon.2004.09.011
  7. Kang KH, Chong YJ and Kim HN. 1999. The genetic relationship of Zelkova serrata registered as the monument using RAPD markers. Korean J. Environ Biol. 17(1): 89-94.
  8. Kim CM, Kwon KW and Moon HK. 1985. Variation of leaf form of leaf variability of natural population of Quercus spp. Jour. Korean For. Soc. 71:82-89.
  9. Kim NH and Kim KP. 2004. Analysis on the species of wooden parts of Korean traditional architecture. Journal of the Institute of Construction Technology. 23(1): 187-200.
  10. Kim SH, Jans YS, Chung HG, Park HS and Cho KJ. 2003. Lear morphological characteristics of Sorbus commixta Hedl. selected populations. Jour. Korean For. Sci. 92(5):488-496.
  11. Kim YJ, Kim KC, Lee BS, Lee GY, Cho KJ, Kang JT and Kim TD. 2005. The variation of leaf characteristics in 6 natural populations of Stewartia koreana Nabi. Jour. Korean For. Sci. 94(6):446-452.
  12. Marchin R, Sage EL and Ward JK. 2008. Population-level variation of Fraxinus americana (white ash) is influenced by precipitation differences across the native range. Tree Physiology 28:151-159. https://doi.org/10.1093/treephys/28.1.151
  13. Okitu S. 2005. Factors controlling geogrphic distribution in savanna vegetation in Namibia. African Study Monographs. Suppl. 30:131-151.
  14. Song JH, Park MH, Moon HK, Han SU and Yi JS. 2000. The variation of leaf form of natural populations of Quercus variabilis in Korea. Jour. Korean For. Soc. 89(5):666-676.
  15. Song JH, Lee JJ, Kang KS and Hur SD. 2008. The variation of leaf form of rare endemic Berchemia berchemiaefolia populations. Jour. Korean For. Soc. 97(4):431-436.
  16. Warren CR, Tausz M and Adams MA. 2005. Does rainfall explain variation in leaf morphology and physiology among populations of red ironbark (Eucalyptus sideroxylon subsp. tricarpa) grown in a common garden? Tree Physiology 25:1369-1378. https://doi.org/10.1093/treephys/25.11.1369
  17. Wiemann MC, Manchester SR, Dilcher DL, Hinojosa LF and Wheeler EA. 1998. Estimation of temperature and precipitation from morphological characteristics of dicotyledonous leaves. American Journal of Botany 85(12): 1796-1802. https://doi.org/10.2307/2446514
  18. 국립산림과학원. 2005. 주요 목조문화재의 수종구성. 150p.
  19. 산림청. 2008. 제5차 산림기본계획. 196p.
  20. 임경빈. 1992. 조림학 본론. 향문사, pp. 331-313.