Successive wetting and drying cycles of concrete due to weather changes can endanger the safety of engineering structures over time. Considering wetting and drying cycles in concrete tests can lead to a more correct and reliable design of engineering structures. This study aims to provide a model that can be used to estimate the resistance properties of concrete under different wetting and drying cycles. Complex sample preparation methods, the necessity for highly accurate and sensitive instruments, early sample failure, and brittle samples all contribute to the difficulty of measuring the strength of concrete in the laboratory. To address these problems, in this study, the potential ability of six machine learning techniques, including ANN, SVM, RF, KNN, XGBoost, and NB, to predict the concrete's tensile strength was investigated by applying 240 datasets obtained using the Brazilian test (80% for training and 20% for test). In conducting the test, the effect of additives such as glass and polypropylene, as well as the effect of wetting and drying cycles on the tensile strength of concrete, was investigated. Finally, the statistical analysis results revealed that the XGBoost model was the most robust one with R2 = 0.9155, mean absolute error (MAE) = 0.1080 Mpa, and variance accounted for (VAF) = 91.54% to predict the concrete tensile strength. This work's significance is that it allows civil engineers to accurately estimate the tensile strength of different types of concrete. In this way, the high time and cost required for the laboratory tests can be eliminated.
Clinicians usually use stethoscopic auscultation for the diagnosis of heart diseases. However, the heart sound signal has varying characteristics due to the noise and/or the conditions of the patients. Also, it is not easy for junior clinicians to find the acoustical differences between different kinds or heart sound signals. which may result in errors in the diagnosis. Thus it will be quite useful for the clinicians to make use of an automatic classification system using signal processing techniques. In this paper, we propose to use hidden Markov models in stead of artificial neural networks which have been conventionally used for the automatic classification of heart sounds. In the experiments classifying heart sound signals. we could see that the proposed methods were quite successful in the classification accuracy.
In this dissertation, We demonstrated the Travel Time forecasting model in the freeway of multi-section with regard of drives' attitude. Recently, the forecasted travel time that is furnished based on expected travel time data and advanced experiment isn't being able to reflect the time-lag phenomenon specially in case of long distance trip, so drivers don't believe any more forecasted travel time. And that's why the effects of ATIS(Advanced Traveler Information System) are reduced. Therefore, in this dissertation to forecast the travel time of the freeway of multi-section reflecting the time-lag phenomenon & the delay of tollgate, we used traffic volume data & TCS data that are collected by Korea Highway Cooperation. Also keep the data of mixed unusual to applicate real system. The applied model for forecasting is consisted of feed-forward structure which has three input units & two output units and the back-propagation is utilized as studying method. Furthermore, the optimal alternative was chosen through the twelve alternative ideas which is composed of the unit number of hidden-layer & repeating number which affect studying speed & forecasting capability. In order to compare the forecasting capability of developed ANN model. the algorithm which are currently used as an information source for freeway travel time. During the comparison with reference model, MSE, MARE, MAE & T-test were executed, as the result, the model which utilized the artificial neural network performed more superior forecasting capability among the comparison index. Moreover, the calculated through the particularity of data structure which was used in this experiment.
This study presents the development of a well placement optimization model, combining an artificial neural network, which enables high-speed calculation, with a simulated annealing algorithm. The conventional FDM simulator takes excessive time when used to perform a field scale reservoir simulation. In order to solve this problem, an artificial neural network was applied to the model to allow the simulation to be executed within a short time. Also by using the given result, the optimization method, SA algorithm, was implemented to automatically select the optimal location without taking any subjective experiences into consideration. By comparing the result of the developed model with the eclipse simulator, it was found that the prediction performance of the developed model has become favorable, and the speed of calculation performance has also been improved. Especially, the optimum value was estimated by performing a sensitivity analysis for the cooling rate and the initial temperature, which is the control parameter of SA algorithm. From this result, it was verified that the calculation performance has been improved, as well. Lastly, an optimization for the well placement was performed using the model, and it concluded the optimized place for the well by selecting regions with great productivity.
In Korea, the rainfall is concentrated in summer under the influence of monsoon climate. Thus, even a small climate change can be significant problems in water resources. As a result, a lot of attention has been focused on climate changes and a number of researches have been conducted in a manner commensurate with the attention to the climate change. This study is intended to forecast the changes in the flow and water quality of the Nam river resulting from the future climate changes in the Nam river basin using a watershed and water quality model. An SWAT model, as a watershed hydrologic model, was established after estimating a climate scenario using an artificial neural network method, and the established model was verified and adjusted using date from the Ministry of Environment to evaluate the applicability of the model. As a consequence, $R^2$ showed more than 0.7 in the simulation test, which satisfies the minimum required level. Results from the SWAT model and the future Namgang dam discharge calculated by HEC-ResSIM is used as input date for QUALKO. The results showed a huge variation in BOD depending on the annual flow of the river, which recorded a maximum difference of 2 mg/L between a rainy season and a dry season. It can be deduced that because rainfall and the runoff of a basin significantly account for the water quality of a river, higher water concentrations are recorded in a dry season in which the flow is not as much as that in a rainy season. It also can be said that water should be reserved in advance to secure water in the Nam river downstream for a dry season and be controlled in an effective and efficient manner to provide better water quality.
Korean Journal of Construction Engineering and Management
/
v.24
no.5
/
pp.22-34
/
2023
Predicting accurately the construction cost budget in the early stages of construction projects is crucial to support the client's decision-making and achieve the objectives of the construction project. This holds true for public construction projects as well. However, the current methods for predicting construction cost budgets in the early stages of public construction projects are not sophisticated enough in terms of accuracy and reliability, indicating a need for improvement. The objective of this study is to develop a construction cost budget prediction model that can be utilized in the early stages of public building projects using an artificial neural network (ANN). In this study, an artificial neural network model was developed using the SPSS Statistics program and the data provided by the Public Procurement Service. The level of construction cost budget prediction was analyzed, and the accuracy of the model was validated through additional testing. The validation results demonstrated that the developed artificial neural network model exhibited an error range for estimates that can be utilized in the early stages of projects, indicating the potential to predict construction cost budgets more accurately by incorporating various project conditions.
Shahraki, Hadi Raeisi;Pourahmad, Saeedeh;Paydar, Shahram;Azad, Mohsen
Asian Pacific Journal of Cancer Prevention
/
v.17
no.4
/
pp.1861-1864
/
2016
Although early diagnosis of thyroid nodule type is very important, the diagnostic accuracy of standard tests is a challenging issue. We here aimed to find an optimal combination of factors to improve diagnostic accuracy for distinguishing malignant from benign thyroid nodules before surgery. In a prospective study from 2008 to 2012, 345 patients referred for thyroidectomy were enrolled. The sample size was split into a training set and testing set as a ratio of 7:3. The former was used for estimation and variable selection and obtaining a linear combination of factors. We utilized smoothly clipped absolute deviation (SCAD) logistic regression to achieve the sparse optimal combination of factors. To evaluate the performance of the estimated model in the testing set, a receiver operating characteristic (ROC) curve was utilized. The mean age of the examined patients (66 male and 279 female) was $40.9{\pm}13.4years$ (range 15- 90 years). Some 54.8% of the patients (24.3% male and 75.7% female) had benign and 45.2% (14% male and 86% female) malignant thyroid nodules. In addition to maximum diameters of nodules and lobes, their volumes were considered as related factors for malignancy prediction (a total of 16 factors). However, the SCAD method estimated the coefficients of 8 factors to be zero and eliminated them from the model. Hence a sparse model which combined the effects of 8 factors to distinguish malignant from benign thyroid nodules was generated. An optimal cut off point of the ROC curve for our estimated model was obtained (p=0.44) and the area under the curve (AUC) was equal to 77% (95% CI: 68%-85%). Sensitivity, specificity, positive predictive value and negative predictive values for this model were 70%, 72%, 71% and 76%, respectively. An increase of 10 percent and a greater accuracy rate in early diagnosis of thyroid nodule type by statistical methods (SCAD and ANN methods) compared with the results of FNA testing revealed that the statistical modeling methods are helpful in disease diagnosis. In addition, the factor ranking offered by these methods is valuable in the clinical context.
A primary objective of this study is to develop a drought forecasting technique based on groundwater which can be exploit for water supply under drought stress. For this purpose, we explored the lagged relationships between regionalized SGI (standardized groundwater level index) and SPI (standardized precipitation index) in view of the drought propagation. A regional prediction model was constructed using a NARX (nonlinear autoregressive exogenous) artificial neural network model which can effectively capture nonlinear relationships with the lagged independent variable. During the training phase, model performance in terms of correlation coefficient was found to be satisfactory with the correlation coefficient over 0.7. Moreover, the model performance was described by root mean squared error (RMSE). It can be concluded that the proposed approach is able to provide a reliable SGI forecasts along with rainfall forecasts provided by the Korea Meteorological Administration.
Journal of Korean Tunnelling and Underground Space Association
/
v.21
no.2
/
pp.227-242
/
2019
This paper presents a method to predict ground types ahead of a tunnel face utilizing operational data of the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) when running through soil ground. The time series analysis model which was applicable to predict the mixed ground composed of soils and rocks was modified to be applicable to soil tunnels. Using the modified model, the feasibility on the choice of the soil conditioning materials dependent upon soil types was studied. To do this, a self-organizing map (SOM) clustering was performed. Firstly, it was confirmed that the ground types should be classified based on the percentage of 35% passing through the #200 sieve. Then, the possibility of predicting the ground types by employing the modified model, in which the TBM operational data were analyzed, was studied. The efficacy of the modified model is demonstrated by its 98% accuracy in predicting ground types ten rings ahead of the tunnel face. Especially, the average prediction accuracy was approximately 93% in areas where ground type variations occur.
Yu Luo;Zhun Huang;Zihan Gao;Bingbing Wang;Yanwei Zhang;Yan Bai;Qingxia Wu;Meiyun Wang
Korean Journal of Radiology
/
v.25
no.2
/
pp.189-198
/
2024
Objective: To investigate the prognostic utility of radiomics features extracted from 18F-fluorodeoxyglucose (FDG) PET/CT combined with clinical factors and metabolic parameters in predicting progression-free survival (PFS) and overall survival (OS) in individuals diagnosed with extranodal nasal-type NK/T cell lymphoma (ENKTCL). Materials and Methods: A total of 126 adults with ENKTCL who underwent 18F-FDG PET/CT examination before treatment were retrospectively included and randomly divided into training (n = 88) and validation cohorts (n = 38) at a ratio of 7:3. Least absolute shrinkage and selection operation Cox regression analysis was used to select the best radiomics features and calculate each patient's radiomics scores (RadPFS and RadOS). Kaplan-Meier curve and Log-rank test were used to compare survival between patient groups risk-stratified by the radiomics scores. Various models to predict PFS and OS were constructed, including clinical, metabolic, clinical + metabolic, and clinical + metabolic + radiomics models. The discriminative ability of each model was evaluated using Harrell's C index. The performance of each model in predicting PFS and OS for 1-, 3-, and 5-years was evaluated using the time-dependent receiver operating characteristic (ROC) curve. Results: Kaplan-Meier curve analysis demonstrated that the radiomics scores effectively identified high- and low-risk patients (all P < 0.05). Multivariable Cox analysis showed that the Ann Arbor stage, maximum standardized uptake value (SUVmax), and RadPFS were independent risk factors associated with PFS. Further, β2-microglobulin, Eastern Cooperative Oncology Group performance status score, SUVmax, and RadOS were independent risk factors for OS. The clinical + metabolic + radiomics model exhibited the greatest discriminative ability for both PFS (Harrell's C-index: 0.805 in the validation cohort) and OS (Harrell's C-index: 0.833 in the validation cohort). The time-dependent ROC analysis indicated that the clinical + metabolic + radiomics model had the best predictive performance. Conclusion: The PET/CT-based clinical + metabolic + radiomics model can enhance prognostication among patients with ENKTCL and may be a non-invasive and efficient risk stratification tool for clinical practice.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.