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INTRODUCTION

Extranodal nasal-type NK/T cell lymphoma (ENKTCL) 
is a subtype of non-Hodgkin lymphoma that occurs 
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Objective: To investigate the prognostic utility of radiomics features extracted from 18F-fluorodeoxyglucose (FDG) PET/CT 
combined with clinical factors and metabolic parameters in predicting progression-free survival (PFS) and overall survival (OS) 
in individuals diagnosed with extranodal nasal-type NK/T cell lymphoma (ENKTCL).
Materials and Methods: A total of 126 adults with ENKTCL who underwent 18F-FDG PET/CT examination before treatment 
were retrospectively included and randomly divided into training (n = 88) and validation cohorts (n = 38) at a ratio of 7:3. 
Least absolute shrinkage and selection operation Cox regression analysis was used to select the best radiomics features and 
calculate each patient’s radiomics scores (RadPFS and RadOS). Kaplan–Meier curve and Log-rank test were used to compare 
survival between patient groups risk-stratified by the radiomics scores. Various models to predict PFS and OS were constructed, 
including clinical, metabolic, clinical + metabolic, and clinical + metabolic + radiomics models. The discriminative ability of 
each model was evaluated using Harrell’s C index. The performance of each model in predicting PFS and OS for 1-, 3-, and 
5-years was evaluated using the time-dependent receiver operating characteristic (ROC) curve.
Results: Kaplan–Meier curve analysis demonstrated that the radiomics scores effectively identified high- and low-risk 
patients (all P < 0.05). Multivariable Cox analysis showed that the Ann Arbor stage, maximum standardized uptake value 
(SUVmax), and RadPFS were independent risk factors associated with PFS. Further, β2-microglobulin, Eastern Cooperative 
Oncology Group performance status score, SUVmax, and RadOS were independent risk factors for OS. The clinical + metabolic + 
radiomics model exhibited the greatest discriminative ability for both PFS (Harrell’s C-index: 0.805 in the validation cohort) and 
OS (Harrell’s C-index: 0.833 in the validation cohort). The time-dependent ROC analysis indicated that the clinical + metabolic 
+ radiomics model had the best predictive performance.
Conclusion: The PET/CT-based clinical + metabolic + radiomics model can enhance prognostication among patients with ENKTCL 
and may be a non-invasive and efficient risk stratification tool for clinical practice.
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outside lymph nodes and is characterized by special 
morphology, immunophenotype, and biological behavior 
[1]. ENKTCL exhibits high malignancy, invasiveness, and 
rapid progression [2]. Currently, no standard treatment 
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MATERIALS AND METHODS

Patients 
This retrospective study was approved by the local 

Institutional Ethics Committee (IRB No. 2021148) and the 
requirement for informed consent was waived. Patients 
with pathologically confirmed ENKTCL between May 2014 
and January 2022 were retrospectively included. Inclusion 
criteria were the following: 1) no prior tumor-related treatment, 
2) PET/CT examination performed before initial treatment, 
3) complete clinical data and follow-up information, 4) local 
radiotherapy or combination with non-anthracycline-based 
chemotherapy used in subsequent treatment. Exclusion criteria 
included the following: 1) tumors combined with other 
malignancies or hematological diseases, 2) poor image quality 
that could not be evaluated. A total of 126 patients with the 
required clinical, imaging, and follow-up data were included 
in the study. These patients were then randomly divided into 
the training (n = 88) and validation (n = 38) cohorts at a ratio 
of 7:3. The training cohort included 51 male and 37 female 
with a median age of 46 years (range: 20–87 years). The 
validation cohort included 28 male and 10 female with a 
median age of 47 years (range: 21–71 years).

Clinical Information Collection and Follow-Up
Basic clinical data including sex, age, B symptoms, 

Ann Arbor stage, lactate dehydrogenase (LDH) levels, β2-
microglobulin (β2-MG) levels, Eastern Cooperative Oncology 
Group (ECOG) performance status score, International 
Prognostic Index (IPI) score, and radiotherapy were collected. 
Patients were followed every three months for the first two 
years and every six months thereafter. Follow-up results were 
collected through the electronic medical record system or 
by telephone. The endpoints of this study were progression-
free survival (PFS) and OS. PFS was measured in months 
as the time interval from the date of diagnosis to the first 
occurrence of disease progression, recurrence, or death as 
events. OS was measured in months as the time interval from 
the date of diagnosis to the date of death. At the date of 
the last follow-up visit, patients who did not experience any 
events were censored.

PET/CT Image Acquisition
All patients underwent PET/CT whole-body scanning two 

weeks before treatment. The scanner and tracer were Discovery 
VCT PET/CT (GE Healthcare, Waukesha, WI, USA) and 18F-FDG, 
respectively; the radiochemical purity was > 95%. Patients 

regimen exists for ENKTCL. Due to drug-resistance genes 
and overexpression of P-glycoprotein in tumor cells, the 
L-asparaginase-based chemotherapy regimen is widely used 
in clinical practice [3]. While combined chemoradiotherapy 
has been shown to achieve a 5-year overall survival (OS) rate 
of up to 59% in patients, some still exhibit recurrence and 
resistance [4,5]. Therefore, early identification of high-risk 
patients with a propensity for progression or recurrence is 
critical for individualized precision therapy, clinical treatment 
decision-making, and accurate prognostic prediction.

18F-fluorodeoxyglucose (18F-FDG) PET/CT is a whole-body 
imaging technique that combines functional metabolism 
and anatomical structure [6]. It provides detailed 
information—including lesion size, location, metabolic 
activity, and metastasis—valuable in diagnosing and 
treating patients. Previous studies have shown that semi-
quantitative parameters—including maximum standardized 
uptake value (SUVmax), metabolic tumor volume (MTV), 
and total lesion glycolysis (TLG)—may serve as reliable 
prognostic indicators for patients with ENKTCL [7-9]. 
However, ENKTCL can induce chronic inflammation in 
the nasal cavity and nasopharynx, which may impact 
the accuracy of measurements. Furthermore, the above 
parameters are obtained from setting corresponding 
thresholds for delineated regions of interest, which may not 
fully capture the spatial distribution characteristics of tracer 
activity strongly associated with tumor heterogeneity [10,11]. 
Radiomics offers potential pathophysiological information 
through high-throughput extraction of features from medical 
images, quantitatively analyzes tumor heterogeneity, and 
selects features for constructing prognostic prediction 
models through specific algorithms and statistical analysis 
to promote the development of precise and individualized 
tumor treatment [12,13]. Tumor heterogeneity is a key 
factor in determining disease aggressiveness and is closely 
related to proliferation, differentiation, and metabolism [14]. 
Radiomics overcomes the limitations of clinical dependence 
on the subjective experience of diagnostic physicians and 
significantly expands the guiding value of medical imaging in 
clinical practice. While PET/CT radiomics has been applied to 
various malignant tumors, few studies exist on ENKTCL [15-17]. 
Therefore, this study aimed to explore the prognostic efficacy 
of PET/CT radiomics features combined with clinical risk 
factors and tumor metabolic load in patients with ENKTCL.
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were prohibited from strenuous exercise within 24 hours 
before examination and fasted for at least 6 hours to ensure 
their blood glucose level was < 11.1 mmol/L. After quiet 
rest for 60 ± 10 minutes, 5.5 MBq/kg FDG was injected 
intravenously, and the scan was performed. The scanning 
range was from the skull base to the lower femur. CT 
scanning parameters were as follows: tube voltage, 120 kVp; 
tube current, 110 mA; and slice thickness, 3.75 mm. The 
emission scan was acquired for 2 minutes per bed position. 
Images of four to six bed positions were acquired for each 
patient, and PET images were reconstructed using an 
ordered subset expectation maximization algorithm.

Metabolic Parameter Acquisition and Feature Extraction
All images were analyzed by two experienced 

radiologists who were blinded to the clinical and 
pathological information. The post-processing workstation 
(GE Healthcare) was used to semi-automatically segment 
the three-dimensional volumes of interest (VOIs) of the 
lesions and calculate MTV and TLG with the threshold of 
41% of SUVmax according to the recommendation of the 
European Association of Nuclear Medicine. Differences 
of opinion were resolved through discussion. The CT 
images were segmented using PET images as a reference. 
Another senior radiologist with 10 years of experience then 
verified the segmentation to identify any discrepancies. 
Inconsistencies in the depiction of lesions were rectified. 
When disagreement arose, the final segmentation results 
were determined by a more senior radiologist. The open-

source software PyRadiomics 3.0.1 (http://github.com/
Radiomics/pyradiomics) was used to feature extract and 
analyze the VOIs segmented by PET and CT sequences. 
The images were preprocessed by normalization and 
resampling. The original images were transformed by filters 
before features extraction: 1) first-order statistical features, 
2) shape features, 3) texture features, including gray-level 
co-occurrence matrix (GLCM), gray-level dependence matrix 
(GLDM), gray-level run length matrix (GLRLM), gray-level size 
zone matrix (GLSZM) and neighboring gray-tone difference 
matrix (NGTDM), 4) high-level features, which extracted 
features from filtered images.

Feature Selection
To avoid model overfitting, radiomic features associated 

with survival were first selected by univariable and 
multivariable Cox regression (P < 0.05). Then Z-score 
normalization was used to reduce the dimensional difference 
of the remaining features. The variance threshold method 
and chi-square test (P < 0.05) were used to delete the 
features with low relevance to survival. The least absolute 
shrinkage and selection operation (LASSO) Cox regression 
algorithm was applied for dimension reduction, and the 
optimal parameter Alpha value was obtained using 10-fold 
cross-validation in the training cohort. Finally, based on 
the selected non-zero coefficient features, the radiomics 
score of PFS (RadPFS) and the radiomics score of OS (RadOS) 
were calculated for each patient according to the linear 
combination of their respective coefficient weights. The 
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Fig. 1. Workflow of the study. RadPFS = radiomics score of PFS, AUC = area under the curve, PFS = progression-free survival 
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analysis framework of this study is shown in Figure 1.

Statistical Analysis
SPSS 26.0 (IBM Corp., Armonk, NY, USA) and R4.2.2 (R 

Foundation for Statistical Computing, Vienna, Austria) 
software were used for statistical analysis. X-tile 3.6.1 
(Robert L Camp, Yale University, New Haven, CT, USA) 
software was used to convert continuous variables, including 
the radiomics scores, into categorical variables and to 
stratify patients by risk based on optimal cutoff points 
[18,19]. Categorical variables were compared by Chi-square 
test. In the training cohort, patients were divided into high-
risk and low-risk groups according to the best cut-off values 
of RadPFS and RadOS, respectively. Kaplan–Meier analysis 
and Log-rank test were used to compare the survival 
differences between the two groups and then verified in the 
validation cohort. Variables with P < 0.05 in univariable Cox 
proportional hazard regression analysis were sequentially 
entered into multivariable Cox regression analysis to identify 
independent risk factors related to survival and construct 
prognostic models. Harrell’s C-index was used to evaluate 
the discriminative ability of each model, ranging from 0.5 
to 1, with values closer to 1 indicating better performance. 
The predictive performance of each model for PFS and OS 
at 1-, 3-, and 5-year follow-up time points were evaluated 
using time-dependent receiver operating characteristic (ROC) 
curves. Statistics with P < 0.05 were considered significant. 

RESULTS

Clinical Data
Table 1 summarizes the basic clinical information of the 

training and validation cohorts. No statistically significant 
differences existed in the clinical data between the two 
cohorts (all P > 0.05). The median PFS and OS were 30 
(range: 3–80 months) and 42 (range: 5–88 months) months, 
respectively. At the final follow-up, 56 (44.4%) patients had 
relapsed or progressed, and 36 (28.6%) patients had died.

Construction of Radiomics Model
A total of 2264 features were extracted from PET and 

CT images, respectively. LASSO Cox regression analysis was 
employed to reduce the dimensionality of features and 
obtain the optimal parameter Alpha value. Finally, five PET 
and eight CT features that displayed strong correlations with 
PFS, as well as two PET features and two CT features that 
strongly correlated with OS, were selected (Supplementary 

Tables 1, 2). In Figure 2, the Kaplan–Meier survival curves 
showed remarkable differences in PFS and OS between high-
risk and low-risk groups in both the training and validation 
cohorts, as determined by the log-rank test (all P < 0.05).

Cox Proportional Hazards Analysis
For PFS, in univariable Cox regression analysis, the 

presence of B symptoms, Ann Arbor stage III–IV, elevated 
LDH, elevated β2-MG, IPI score ≥ 2, ECOG score ≥ 2; higher 
SUVmax, MTV, TLG, and RadPFS values; and absence of 
radiotherapy were adverse factors associated with PFS (all 
P < 0.05). Multivariable analysis (Supplementary Table 3) 
showed that Ann Arbor stage III–IV (adjusted hazard ratio 
[HR]: 2.297; 95% confidence interval [CI]: 1.145–4.610; 

Table 1. Baseline clinical characteristics of the patients

Characteristic
Overall 
cohort 

(n = 126)

Training 
cohort 

(n = 88)

Validation 
cohort 

(n = 38)
P*

Sex 0.094
Male 79 (62.7) 51 (58.0) 28 (73.7)
Female 47 (37.3) 37 (42.0) 10 (26.3)

Age, yr 0.713
≤ 60 90 (71.4) 62 (70.5) 28 (73.7)
> 60 36 (28.6) 26 (29.5) 10 (26.3)

Ann Arbor stage 0.515
I–II 88 (69.8) 63 (71.6) 25 (65.8)
III–IV 38 (30.2) 25 (28.4) 13 (34.2)

IPI score 0.415
0–1 66 (52.4) 44 (50.0) 22 (57.9)
≥ 2 60 (47.6) 44 (50.0) 16 (42.1)

ECOG score 0.421
0–1 97 (77.0) 66 (75.0) 31 (81.6)
≥ 2 29 (23.0) 22 (25.0)   7 (18.4)

LDH, U/L 0.673
≤ 250 83 (65.9) 59 (67.0) 24 (63.2)
> 250 43 (34.1) 29 (33.0) 14 (36.8)

β2-MG, mg/L 0.435
≤ 2 53 (42.1) 39 (44.3) 14 (36.8)
> 2 73 (57.9) 49 (55.7) 24 (63.2)

B symptom 0.480
Presence 57 (45.2) 38 (43.2) 19 (50.0)
Absence 69 (54.8) 50 (56.8) 19 (50.0)

Radiotherapy 0.498
Presence 41 (32.5) 27 (30.7) 14 (36.8)
Absence 85 (67.5) 61 (69.3) 24 (63.2)

*For comparing training and validations cohorts.
IPI = International Prognostic Index, ECOG = Eastern Cooperative 
Oncology Group, LDH = lactate dehydrogenase, β2-MG = β2-
microglobulin



193

PET/CT Radiomics to Predict the Prognosis of ENKTCL Patients

https://doi.org/10.3348/kjr.2023.0618kjronline.org

Fig. 2. Kaplan–Meier survival curves of ENKTCL patients as predicted by radiomics scores for PFS (A, B) and OS (C, D). The horizontal 
axis, vertical axis, blue curve, and red curve represent survival time, survival probability, low-risk group, and high-risk group, respectively. 
A, C: Training cohort. B, D: Validation cohort. ENKTCL = extranodal nasal-type NK/T cell lymphoma, PFS = progression-free survival, OS = 
overall survival, RadPFS = radiomics score of PFS, RadOS = radiomics score of OS 

P = 0.019), higher SUVmax (adjusted HR: 2.438; 95% CI: 
1.096–5.422; P = 0.029), and higher RadPFS (adjusted 
HR: 8.182; 95% CI: 3.248–20.615; P < 0.001) values were 
independent prognostic factors for PFS. Clinical (Ann Arbor 
stage), metabolic (SUVmax), clinical + metabolic (Ann Arbor 
stage + SUVmax), and clinical + metabolic + radiomics (Ann 
Arbor stage + SUVmax + RadPFS) models were constructed 
based on the results.

For OS, in univariable Cox regression analysis, the 
presence of B symptoms, Ann Arbor stage III–IV, elevated 

β2-MG, IPI score ≥ 2, and ECOG score ≥ 2, and higher 
SUVmax, MTV, TLG, and RadOS values were significantly 
associated with worse OS (all P < 0.05). Multivariable 
analysis (Supplementary Table 4) showed that elevated 
β2-MG (adjusted HR: 5.001; 95% CI: 1.114–22.447; P = 
0.036), ECOG score ≥ 2 (adjusted HR: 2.762; 95% CI: 1.089–
7.002; P = 0.032), higher SUVmax (adjusted HR: 3.436; 
95% CI: 1.008–11.715; P = 0.049), and RadOS (adjusted 
HR: 2.821; 95% CI: 1.011–7.870; P = 0.048) values were 
independent prognostic factors for OS. Clinical (β2-MG + 
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ECOG score), metabolic (SUVmax), clinical + metabolic (β2-
MG + ECOG score + SUVmax), and clinical + metabolic + 
radiomics (β2-MG + ECOG score + SUVmax + RadOS) models 
were constructed based on the above results.

Performance and Validation of Prognostic Models
The clinical + metabolic + radiomics model had the best 

predictive performance in both the training (C-index for 
PFS: 0.865, 95% CI: 0.821–0.908; C-index for OS: 0.876, 
95% CI: 0.818–0.935) and validation (C-index for PFS: 
0.805, 95% CI: 0.680–0.931; C-index for OS: 0.833, 95% CI: 
0.725–0.942) cohorts (Table 2). 

In predicting PFS at 1-, 3-, and 5-year clinical follow-
ups, the clinical + metabolic + radiomics model consistently 
outperformed other models. Specifically, for the one-year 
follow-up among the training cohort, the area under the 
curve (AUC) values were as follows: clinical + metabolic + 
radiomics model (0.857), clinical model (0.652), metabolic 
model (0.771), and clinical + metabolic model (0.804). 
Similar patterns were observed for the 3-, and 5-year follow-
ups. For the validation cohort, at one-year follow-up, the 
AUC values were 0.676, 0.533, 0.503, and 0.518 for the 
clinical + metabolic + radiomics, clinical, metabolic, and 
clinical + metabolic models, respectively. Again, the 3-, 
and 5-year follow-ups reflected the same trend. The time-
dependent ROC curves are provided in the Supplementary 
Material (Supplementary Fig. 1).

Furthermore, when predicting the survival risk for OS at 1-, 
3-, and 5-years, the clinical + metabolic + radiomics model 
demonstrated improved predictive performance compared 

to other models (clinical + metabolic + radiomics model vs. 
clinical model vs. metabolic model vs. clinical + metabolic 
model), the AUC values for the training cohort were 0.933, 
0.902, 0.646, and 0.909 for 1 year; 0.851, 0.767, 0.645, 
and 0.803 for 3 years; and 0.853, 0.827, 0.636, and 0.896 
for 5 years, respectively. In the validation cohort, the AUC 
values were 0.819, 0.597, 0.750, and 0.750 for 1 year; 
0.803, 0.574, 0.780, and 0.738 for 3 years; and 0.785, 
0.640, 0.690, and 0.758 for 5 years, respectively. The time-
dependent ROC curves are provided in the Supplement 
material (Supplementary Fig. 2).

DISCUSSION

This study preliminarily explored the prognostic value of 
baseline PET/CT radiomics features combined with clinical 
indicators and metabolic parameters in patients with 
ENKTCL. The results revealed that the clinical + metabolic + 
radiomics model had the highest AUC values for predicting 
PFS and OS in both the training and validation cohorts. The 
clinical + metabolic + radiomics model better predicted 
the prognosis of ENKTCL patients and contributed to more 
effective treatment implementation by clinicians.

The multivariable Cox analysis conducted in this study 
showed that the Ann Arbor stage, β2-MG level, and ECOG 
score were associated with the prognosis of ENKTCL patients, 
which was roughly consistent with previous findings 
[20,21]. Ann Arbor staging is a standard method widely 
used in lymphoma staging, with a higher stage indicating 
a more widespread disease, faster progression, and poorer 

Table 2. Harrell’s C-index results of each model in the training cohort and the validation cohort

Models
Training cohort Validation cohort

C-index 95% CI C-index 95% CI
PFS

Clinical model 0.678 0.604–0.752 0.605 0.473–0.737
Metabolic model 0.701 0.638–0.764 0.597 0.461–0.734
Clinical + metabolic model 0.781 0.722–0.840 0.652 0.504–0.800
Radiomics score (RadPFS) 0.791 0.735–0.847 0.788 0.691–0.885
Clinical + metabolic + radiomics model 0.865 0.821–0.908 0.805 0.680–0.931

OS
Clinical model 0.832 0.761–0.904 0.564 0.403–0.725
Metabolic model 0.640 0.587–0.693 0.737 0.633–0.841
Clinical + metabolic model 0.854 0.791–0.916 0.788 0.676–0.901
Radiomics score (RadOS) 0.769 0.680–0.858 0.705 0.549–0.861
Clinical + metabolic + radiomics model 0.876 0.818–0.935 0.833 0.725–0.942

CI = confidence interval, PFS = progression-free survival, RadPFS = radiomics score of PFS, OS = overall survival, RadOS = radiomics score 
of OS
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prognosis [22]. Meanwhile, β2-MG—a component of major 
histocompatibility complex class I molecules—is associated 
with the prognosis of lymphoproliferative diseases and has 
been included in the risk stratification system for various 
disorders [23,24]. According to Prizment et al. [25], β2-MG 
is linked to tumor load and cell turnover, influencing tumor 
growth, survival, and apoptosis. ECOG score is a widely 
used indicator of patient physical ability and daily activity, 
wherein higher scores suggest poor physical fitness, reduced 
treatment tolerance, and an unfavorable prognosis [26]. 
Clinical models were established in this study using the 
above risk factors to predict both PFS and OS. However, the 
clinical models underperformed in the validation cohort, 
indicating limited predictive value. This may be attributed 
to the lack of specificity in the clinical manifestations 
of ENKTCL patients. Further, the relatively insufficient 
information from the clinical metrics was inapplicable for 
further prognosis prediction. Therefore, including more 
metrics like metabolism and radiomics will aid in more 
precise risk stratification.

A battery of ENKTCL prognostic models have been 
proposed and widely employed in clinical practice [27,28]. 
Despite improving the risk stratification of patients and 
having some predictive prognostic value, these models 
have limited sensitivity and do not include individualized 
information or imaging [29,30]. Imaging features are 
critical for assessing tumor biology and microenvironment. 
18F-FDG PET/CT has been extensively utilized in the clinical 
management of lymphoma as it can reveal concealed lesions, 
comprehensively evaluate the extent of lesion involvement, 
and infer the metabolic activity and proliferation status 
of the lesion [31]. This study reported that SUVmax is an 
independent risk factor for predicting both PFS and OS, 
this is consistent with the findings of Bai et al. [32], who 
reported that higher SUVmax values showed considerably 
greater chances of treatment failure. Higher SUVmax values 
indicate more active tumor cell metabolism and faster 
proliferation rate linked to adverse biological behaviors 
such as tumor size and local invasion. Nonetheless, other 
studies have reported inconsistent results and argued 
that SUVmax might not provide valuable information for 
prognosis prediction [33,34]. This inconsistency may be due 
to the heterogeneity of enrolled patients and SUVmax only 
being able to measure the maximum standard uptake value 
of tumor lesions instead of the overall tumor metabolic 
load. New evaluation schemes should be proposed, including 
individualized metrics to enhance prediction.

Radiomics can extract biological behavior information 
to reflect the intrinsic properties of lesions for predicting 
tumor heterogeneity, progression, and prognosis. In this 
study, RadPFS and RadOS derived from radiomics features 
extracted from PET/CT images can effectively identify 
high-risk and low-risk patients with ENKTCL (P < 0.05). 
Currently, few studies have used radiomics to predict the 
prognosis of ENKTCL. Ko et al. [35] retrospectively analyzed 
the baseline PET images of 17 ENKTCL patients and found 
that texture features were independent predictors of 
disease progression and could improve patient prognosis 
stratification. Wang et al. [36] reported that the PET-
based radiomics model had inferior predictive capabilities 
for PFS and OS in ENKTCL patients relative to metabolic 
models. This study simultaneously extracted radiomics 
features from CT and PET images for further prediction. The 
CT features cover the deficiency of PET in morphological 
and structural information. The optimal radiomics features 
extracted in this study mainly consist of shape and texture 
features including GLCM, GLDM, GLSZM, and GLRLM. The 
shape features primarily include the least axis length and 
maximum 2D diameter, which describe the length of the 
spatially shortest axis of the lesion and the diameter of 
the maximum cross-section of the lesion, respectively [37]. 
Larger values indicate a malignancy trend of the lesion and 
an increased risk of metastasis and recurrence. GLCM reflects 
the gray relationship between two voxels in a certain 
direction and distance, representing the spatial correlation 
of gray values in the image [38]. GLDM measures grayscale 
similarity and dependence, while GLSZM evaluates texture 
uniformity [39,40]. GLRLM mainly reflects the roughness and 
directionality of the texture [41]. Changes in these texture 
features reflect the detailed structure of lymphomas, which 
are related to the degree of malignancy, heterogeneity, and 
treatment response of patients. Radiomics can quantify 
image information from multiple perspectives and help 
improve the predictive performance of clinical + metabolic + 
radiomics models.

This study had the following limitations. First, it is a 
retrospective single-center study with a small sample size, 
and the efficacy of the model needs to be further verified 
with extended research. Second, the study did not include 
multimodal information such as genes and proteins, which 
warrant further analysis. Third, this study utilized the 
radiomics analysis method, which can be combined with 
deep learning techniques in the future, such as convolutional 
neural networks, to optimize model performance.
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In conclusion, the model constructed with the 
combination of PET/CT radiomics features, clinical 
information, and metabolic parameters can accurately and 
noninvasively predict the prognosis of ENKTCL patients. 
Utilizing this approach has the potential to provide a crucial 
reference for subsequent treatment and follow-up.
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