• Title/Summary/Keyword: ANN 기법

Search Result 232, Processing Time 0.031 seconds

기업부도예측을 위한 통합알고리즘

  • Bae Jae-Gwon;Kim Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.195-202
    • /
    • 2006
  • 본 연구에서는 보다 효과적인 기업부도예측을 위하여, 동계적 방법과 인공지능 방법을 결합한 통합모형을 제시하였다. 이를 위하여 통계적인 모형 중에서 가장 널리 활용되고 있는 다변량 판별분석, 로지스틱 회귀분석과 인공 지능적인 방법으로서 최근 널리 사용되고 있는 인공신경망, 규칙유도기법, 베이지안 망의 5가지 방법론을 통합한 Voting with Performance & Weights from ANN(WP-ANN) 통합모형을 제시하였다. 실험결과, 본 연구에서 제안한 WP-ANN 통합모형은 다변량 판별분석, 로지스탁 회귀분석, 인공신경망, 규칙유도기법, 베이지안 망 등의 단일모형과 비교한 결과 가장 예측정확성이 유수한 것으로 나타났다. 따라서 본 연구를 통해 기업부도예측에 있어서 WP-ANN 통합모형이 기존의 모형들에 비해 우수한 예측정확성을 나타냄을 알 수 있었다.

  • PDF

KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul - (기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 -)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1567-1577
    • /
    • 2020
  • Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.

The Landslide Probability Analysis using Logistic Regression Analysis and Artificial Neural Network Methods in Jeju (로지스틱회귀분석기법과 인공신경망기법을 이용한 제주지역 산사태가능성분석)

  • Quan, He Chun;Lee, Byung-Gul;Lee, Chang-Sun;Ko, Jung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.33-40
    • /
    • 2011
  • This paper presents the prediction and evaluation of landslide using LRA(logistic regression analysis) and ANN (Artificial Neural Network) methods. In order to assess the landslide, we selected Sarabong, Byeoldobong area and Mt. Song-ak in Jeju Island. Five factors which affect the landslide were selected as: slope angle, elevation, porosity, dry density, permeability. So as to predict and evaluate the landslide, firstly the weight value of each factor was analyzed by LRA(logistic regression analysis) and ANN(Artificial Neural Network) methods. Then we got two prediction maps using AcrView software through GIS(Geographic Information System) method. The comparative analysis reveals that the slope angle and porosity play important roles in landslide. Prediction map generated by LRA method is more accurate than ANN method in Jeju. From the prediction map, we found that the most dangerous area is distributed around the road and path.

Estimation of Missing Rainfall Data Considering Spatio-Temporal Variation Using Radar Data (레이더 자료를 이용한 시공간적 변동성을 고려한 강우의 결측치 추정)

  • Song, Chang-U;Song, Chang-Joon;Kim, Byeong-Sik;Kim, Soo-Jun;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1196-1200
    • /
    • 2010
  • 본 논문에서는 지점 강우의 결측치를 추정하기 위해 전통적인 통계학적 내삽기법을 이용한 역거리가중치법(IDWM), 역지수가중치법(IEWM), 상관계수가중치법(CCWM)과 패턴 인식의 일종인 인공신경망(ANN)기법 그리고 시공간적 강우분포의 측정이 가능한 레이더 자료를 이용해 결측치를 추정하여 각각의 방법을 비교하였다. 임진강 유역의 15개 지상관측소를 대상으로 교차검정(Cross validation) 분석을 실시해 본 결과, CCWM 방법과 ANN기법에 의한 RMSE가 0.46~1.79의 범위를 보였고, 보정레이더를 이용하여 결측치를 추정한 경우RMSE가 0.05~2.26의 범위를 보여 기존의 전통적 결측치 추정방법보다 실측치에 가까운 결과를 보였다. 이는 레이더자료가 지점 강우자료와는 달리 강우의 시공간적 변동성을 고려한 공간분포의 정보를 지니고 있기 때문인 것으로 판단된다.

  • PDF

Assessment of Landslide Causal Factors Using ANN Method (ANN 기법을 이용한 사면 붕괴인자 평가)

  • Song, Young-Karb;Jung, Min-Su;Oh, Jeong-Rim;Cha, A-Reum
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.89-96
    • /
    • 2012
  • In this study landslide causal factors which are considered to have the same effect in assessment techniques are categorized and their impact on landslides is analyzed to acquire reasonable weighting factors in the landslide hazard. Results are compared to those of the Assessment Chart developed by National Institute for Disaster Prevention (NIDP) and the adequacy and proper portion for landslide causal factors are considered. The Artificial Neural Network (ANN) method applied to 28 landslide areas is incorporated to evaluate the reasonable rating. Results show that the following items in the Chart are necessary to modify their portions in order to implement the precise assessment results: 1) Estimated damage; 2) Tension crack; 3) Existence of valley.

Water pipe deterioration assessment using ANN-Clustering (ANN-Clustering 기법을 이용한 상수관로 노후도 평가 및 분류)

  • Lee, Sleemin;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.959-969
    • /
    • 2018
  • The aging water pipes induce various problems, such as water supply suspension due to breakage, insufficient water pressure, deterioration of water quality, damage by sink holes, and economic losses due to water leaks. However, it is impractical and almost impossible to repair and/or replace all deteriorated water pipes simultaneously. Hence, it is required to quantitatively evaluate the deterioration rate of individual pipes indirect way to determine the rehabilitation order of priority. In this study, ANN(Artificial Neural Network)-Clustering method is suggested as a new approach to assess and assort the water pipes. The proposed method has been applied to a water supply network of YG-county in Jeollanam-do. To assess the applicability of the model, the evaluation results were compared with the results of the Numerical Weighting Method (NWM), which is being currently utilized in practice. The assessment results are depicted in a water pipe map to intuitively grasp the degree of deterioration of the entire pipelines. The application results revealed that the proposed ANN-Clustering models can successfully assess the water pipe deterioration along with the conventional approach of NWM.

The Comparison of Estimation Methods for the Missing Rainfall Data with spatio-temporal Variability (시공간적 변동성을 고려한 강우의 결측치 추정 방법의 비교)

  • Kim, Byung-Sik;Noh, Hui-Seong;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2011
  • This paper reviewed application of data-driven method, distance-weighted method(IDWM, IEWM, CCWM, ANN), and radar data method estimated of missing raifall data. To evaluate these methods, statistics was compared using radar and station rainfall data from Imjin-river basin. The range of RMSE values calculated for CCWM, ANN was 1.4 to 1.79mm, and the range of RMSE values estimated data used for radar rainfall data was 0.05 to 2.26mm. Spatial characteristics is considered to Radar rainfall data rather than station rainfall data. Result suggest that estimated data used for radar data can impove estimation of missing raifall data.

Development of a window-shifting ANN training method for a quantitative rock classification in unsampled rock zone (미시추 구간의 정량적 지반 등급 분류를 위한 윈도우-쉬프팅 인공 신경망 학습 기법의 개발)

  • Shin, Hyu-Soung;Kwon, Young-Cheul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.151-162
    • /
    • 2009
  • This study proposes a new methodology for quantitative rock classification in unsampled rock zone, which occupies the most of tunnel design area. This methodology is to train an ANN (artificial neural network) by using results from a drilling investigation combined with electric resistivity survey in sampled zone, and then apply the trained ANN to making a prediction of grade of rock classification in unsampled zone. The prediction is made at the center point of a shifting window by using a number of electric resistivity values within the window as input reference information. The ANN training in this study was carried out by the RPROP (Resilient backpropagation) training algorithm and Early-Stopping method for achieving a generalized training. The proposed methodology is then applied to generate a rock grade distribution on a real tunnel site where drilling investigation and resistivity survey were undertaken. The result from the ANN based prediction is compared with one from a conventional kriging method. In the comparison, the proposed ANN method shows a better agreement with the electric resistivity distribution obtained by field survey. And it is also seen that the proposed method produces a more realistic and more understandable rock grade distribution.

Application of Artificial Neural Networks(ANN) to Ultrasonically Enhanced Soil Flushing of Contaminated Soils (초음파-토양수세법을 이용한 오염지반 복원률증대에 인공신경망의 적용)

  • 황명기;김지형;김영욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.343-350
    • /
    • 2003
  • The range of applications of artificial neural networks(Am) in many branches of geotechnical engineering is growing rapidly. This study was undertaken to develop an analysis model representing ultrasonically enhanced soil flushing by the use of ANN. Input data for the model-development were obtained by laboratory study, and used for training and verification. Analyses involved various ranges of momentum, loaming rate, activation function, hidden layer, and nodes. Results of the analyses were used to obtain the optimum conditions for establishing and verifying the model. The coefficient of correlation between the measured and the predicted data using the developed model was relatively high. It shows potential application of ANN to ultrasonically enhanced soil flushing which is not easy to build up a mathematical model.

KNN / ANN Hybrid algorithm Using indoor positioning Method (KNN/ANN Hybrid 알고리즘을 활용한 실내위치 측위 기법)

  • Kim, Beom-mu;Thapa, Prakash;Paudel, Prebesh;Jeong, Min-A;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1205-1207
    • /
    • 2015
  • Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은 k개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 ANN 군집화를 적용한 KNN과 ANN을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 ANN에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/ANN 알고리즘이 KNN 알고리즘보다 성능이 우수하다.