• 제목/요약/키워드: ANGULAR-VELOCITY

검색결과 914건 처리시간 0.045초

3차원 공간에서의 비행 경로각을 이용한 비행시간 및 충돌각 제어 유도법칙 (Guidance Law of Missiles for Control Impact-Time-and-Angle by Flight Path Angle in Three Dimensional Space)

  • 김승호;이천기;양빈;황정원;박승엽
    • 한국항행학회논문지
    • /
    • 제16권1호
    • /
    • pp.8-15
    • /
    • 2012
  • 본 논문에서는 표적이 고정되고 유도탄의 속도가 일정하다고 가정하고, 3차원 공간에서 비행 경로각을 이용하여 비행시간과 충돌각을 동시에 제어하는 호밍 유도법칙을 제안한다. 유도탄 비행궤적의 비행 경로각을 독립변수로 하여 비선형 모델을 구성한다. 제안한 호밍 유도법칙이 종말 종속 충돌각과 비행시간 제어가 가능하며, 목표물에 정확히 도달하는 과정을 보여준다. 그리고 동시공격시나리오에도 적용할 수 있다. 시뮬레이션을 통해 제안한 유도법칙의 성능을 확인한다.

주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동 토폴로지 변화 (CHANGE OF CHANNEL-FLOW TOPOLOGY BY A STREAMWISE-PERIODIC ARRAY OF ROTATING CIRCULAR CYLINDERS)

  • 정태경;양경수;이경준;강창우
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.17-24
    • /
    • 2013
  • In this study, we consider the characteristics of channel flow in the presence of an infinite streamwise array of equispaced identical rotating circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall for some selected angular speeds. An immersed boundary method was employed to facilitate implementing the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. The presence of the rotating circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to increase of mean friction on the channel walls. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of rotating cylinders to modify flow topology, which might be used to enhance heat transfer on the channel walls.

회전원판과 스프링-댐퍼를 가진 질점계의 상호작용에 의한 불안정성 (Instability caused by interaction between a rotating disk and a mass-spring-damper system)

  • 김창부;한덕호
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2038-2046
    • /
    • 1997
  • In this paper the instability of the system which has a disk and a mass-spring-damper system interacting through a medium having stiffness and damping is analyzed. To solve the equations of motion of this systme, it is assumed that the solution consists of the eigenfunctions which are the products of the Bessel functions and sine or cosine functions. The former represents the radial characteristics of the disk and the latter represents the circumferential characteristics. Using this assumed solution and the orthogonality of the eigenfunctions, the equations of motion can be transformed into a set of equations of motion with variables dependent only on the time. After this set is changed to the state equation, the eigenvalue problem can be made. Once the eigenvalues are calculated according to the angular velocity of the disk, the dynamic characteristics ofthis system is obtained. Because the thickness of the disk and the element characteristics of the mass-spring-damper system have important effects on the stability of the system, it will be understood how these factors affect the system and then a method to ameliorate the stability of the system with a disk will be presented.

스퍼 유성감속기 기반 선박용 터닝기어의 설계 변경 (Design Modification of Marine Turning Gear Based on Spur Planetary Gear)

  • 김건우;이재욱;장진석;오주영;홍종해;이강재
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.7-14
    • /
    • 2019
  • A marine turning gear controls the position of the piston-crank mechanism by rotating the flywheel of the marine engine at a low speed, which is the main auxiliary machine that enables the disassembly and maintenance of the engine. In this study, the safety factor for surface durability and tooth bending strength was improved by the design modification of the marine turning gear based on the spur planetary gear. Angular velocity, torque, and efficiency of the turning gear were measured using a reliability evaluation tester, and a multibody dynamics model for analysis corresponding to the test results was developed. Finally, it was confirmed that the design improvements improved the tooth surface damage of the sun gear in the 3rd reduction stage.

IPMSM의 비선형 적응 백스텝핑 속도 제어 (Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM)

  • 전용호;정승환;최익;조황
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.18-25
    • /
    • 2013
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of Interior Permanent Magnet Synchronous Motor (IPMSM). First, in order to improve the performance of speed tracking, a nonlinear back-stepping controller is designed. In addition, since it is difficult to achieve the high quality control performance without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. Finally, for the efficiency of power consumption of the motor, controller is designed to operate motor with the minimum current for the required maximum torque. The proposed controller is tested through experiment with a 1-hp Interior Permanent Magnet Synchronous Motor (IPMSM) for the angular velocity reference tracking performance and load torque volatility estimation, and to test the Maximum Torque per Ampere (MTPA) operation. The result verifies the efficacy of the proposed controller.

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화 (An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem)

  • 이건영;권만오
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권8호
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

A Consecutive Motion and Situation Recognition Mechanism to Detect a Vulnerable Condition Based on Android Smartphone

  • Choi, Hoan-Suk;Lee, Gyu Myoung;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • 제16권3호
    • /
    • pp.1-17
    • /
    • 2020
  • Human motion recognition is essential for user-centric services such as surveillance-based security, elderly condition monitoring, exercise tracking, daily calories expend analysis, etc. It is typically based on the movement data analysis such as the acceleration and angular velocity of a target user. The existing motion recognition studies are only intended to measure the basic information (e.g., user's stride, number of steps, speed) or to recognize single motion (e.g., sitting, running, walking). Thus, a new mechanism is required to identify the transition of single motions for assessing a user's consecutive motion more accurately as well as recognizing the user's body and surrounding situations arising from the motion. Thus, in this paper, we collect the human movement data through Android smartphones in real time for five targeting single motions and propose a mechanism to recognize a consecutive motion including transitions among various motions and an occurred situation, with the state transition model to check if a vulnerable (life-threatening) condition, especially for the elderly, has occurred or not. Through implementation and experiments, we demonstrate that the proposed mechanism recognizes a consecutive motion and a user's situation accurately and quickly. As a result of the recognition experiment about mix sequence likened to daily motion, the proposed adoptive weighting method showed 4% (Holding time=15 sec), 88% (30 sec), 6.5% (60 sec) improvements compared to static method.

LMI-based $H_{\infty}$ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Keh, Joong-Eup;Kim, In-Soo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.497-497
    • /
    • 2000
  • This paper is concerned with the design of LMI based H$_{\infty}$ controller for a line of sight(LOS) stabilization system. This system which is even linearized to analyse nonlinear characteristic has also a lot of uncertainties. In addition, the angular velocity disturbance from the vehicle's driving deteriorates the stabilized LOS, main purpose of this system. In case of fast driving, particularly, all components which are ignored and skipped to make mathematical modelling act as the uncertainties against this system. The robustness against these uncertainties has been also continuously demanded including the well tracking performance for the target. Therefore, this paper employed H$_{\infty}$ control theory to satisfy these problems and LMI method to make suitable controller with few constraints for this system. Although this system matrix doesn't have full rank, this method make it possible to design H$_{\infty}$ controller and deal with R and S matrices for reducing its order. Consequently, this paper shows that the re-analyses on the real disturbances are achieved and the proposed robust controller for them has better disturbance attenuation and tracking performance. This paper contributes the applicability of reduced order H$_{\infty}$ controller to real system by handling LMI..

  • PDF

Effect of Wrist Resistance Training on Motor Control and Strength in Young Males

  • Kim, You-Sin;Kim, Dae-Hoon
    • 한국운동역학회지
    • /
    • 제24권3호
    • /
    • pp.309-315
    • /
    • 2014
  • The aim of the present study was to investigate the effects of 6-week wrist resistance training on wrist torque control. Nineteen subjects were randomly assigned to either the wrist training group (n=9) or the control group (n=10). The training group performed wrist exercises for six directions (flexion, extension, pronation, supination, radial deviation, and ulnar deviation) while the control group did not. Testing for the isometric torque control error, one-repetition maximum (1-RM) strength, and isokinetic maximum torque (angular velocity of $60^{\circ}/s$ wrist movements) were conducted before and after six weeks of resistance training and after every two-week interval of training. The wrist training group showed significant decreases in isometric torque control error in all six directions after the 2-week resistance training, while the control group did not show significant increase or decrease. The training group showed significant increases in the maximum strength in all six directions assessed by 1-RM strength and isokinetic strength tests after the 4-week resistance training, while the control group did not show any statistically significant changes. This study shows that motor control ability significantly improves within the first two weeks of resistance training, while the wrist strength significantly improves within the first four weeks of resistance training in wrist training group compared to the control.