• Title/Summary/Keyword: ANGULAR-VELOCITY

Search Result 914, Processing Time 0.029 seconds

Numerical Study on Fluid Flow Characteristics in Taylor Reactor using Computational Fluid Dynamics (CFD를 이용한 테일러 반응기의 유동 특성에 관한 수치적 연구)

  • Lee, Seung-Ho;Shim, Kyu Hwan;Jeon, Dong Hyup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.9-19
    • /
    • 2016
  • This study investigated the variations of Taylor flow and particle residence time in a Taylor reactor according to the changes of angular velocity and inlet velocity using computational fluid dynamics technique. The results showed that the fluid in a reactor became unstable with an increase of angular velocity. The flow moved to the regions of CCF, TVF, WVF and MWVF resulting in an increase of Reynolds number. Accordingly, the flow characteristics were different for each regions. We confirmed that the inlet velocity influences the Taylor flow. The particle residence time and standard deviation increased with an increase of angular velocity and a decrease of inlet velocity.

Dynamic Stability of Rotating Cantilever Pipe Conveying Fluid with Tip mass and Crack (끝단질량과 크랙을 가진 유체유동 회전 외팔 파이프의 동적 안정성)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • The stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by the numerical method. That is, the effects of the rotating angular velocity, mass ratio, crack severity and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the Euler-Bernoulli beam theory and the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. Also, the crack is assumed to be in the first mode of fracture and always opened during the vibrations. When the tip mass and crack are constant, the critical flow velocity for flutter is proportional to the rotating angular velocity of pipe. In addition, the stability maps of the rotating pipe system as a rotating angular velocity and mass ratio ${\beta}$ are presented.

The computation algorithm for angular rate using GPS carrier phase (GPS의 반송파 위상을 이용한 각속도 계산 알고리즘)

  • 박준구;김진원;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1338-1341
    • /
    • 1997
  • In this paper, we propose angular rate computation algorithm using GPS carrier phase. A direct angylar rate masurement has not previously been available form GRS, although its availability is highly desirable for use in state feedback control. So we propose angular rate computationalgorithm which derive angular rate from the velocity of differentiated carrier phase og GPS. The proposed algorithm contains attitude determination using double-differentiated carrier phase and 2 baseline configuration whcih provide more practical applications than 3 baseline.

  • PDF

The Concomitant angle of the Directional System of Magnetic Compass (자기 컴퍼스 방위지시부의 수반각)

  • Ahn, Young-Wha;Jeong, Kong-Heon;Shin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.3
    • /
    • pp.17-22
    • /
    • 1986
  • This paper investigates on the performance of liquid magnetic compass measuring the concomitant angle of the directional system by the kind of compass and the coefficiant of viscosity of the liquid of ones in accordance with the turning angular velocity of the compass bowl in artificial horizontal magnetic fields. The obtained results are as follows; 1. The concomitant angle is to be in proportion to the coefficiant of viscosity of the liquid of compass and the turning angular velocity of the compass bowl, but ones is to be in contrary proportion to the magnetic moment of the magnetic needle and the horizontal geomagnetic. 2. The overdevelopment of the concomitant angle keeps on regularly at any optional degree in the turning angular velocity over$\pi$ radian per minute, but varies periodically at 180 degree below 3 $\pi$ radian per minute.

  • PDF

Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion

  • Jung, Yoo-Yeon;Kim, Ji-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • Aerodynamic characteristics of a wing during fold motion were investigated in order to understand how variations or changes in such characteristics increase aircraft performance. Numerical simulations were conducted, and the results were obtained using the unsteady vortex lattice method to estimate the lift, drag and the moment coefficient in subsonic flow during fold motion. Parameters such as the fold angle and the fold angular velocity were summarized in detail. Generally, the lift and pitching moment coefficients decreased as the angle increased. In contrast, the coefficients increased as the angular velocity increased.

The correction of clean robot position error (청소 로봇의 위치오차 보정)

  • Yun, Dong-Woo;Oh, Sung-Nam;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.533-535
    • /
    • 2006
  • Cleaning robot that is selling in present city has various cleaning algorithm. However, error of most products happens on progress direction by small obstacle that do not properly and miss cleaning thereby happens. There is robot that correct own position, but is hard to use in general home because economical strain is very big because is high price product very. In this paper measures angular velocity of robot using deviation sensor, and do to correct error using turning angular velocity and vertical angular velocity. Because detailed cleaning such as high pice style is available without addition of expensive hardware in middle and low price style cleaning product thereby, can possess price competitive power.

  • PDF

Minimum Sensing Angular Velocity Improvement of Ring Laser Gyro Using a Low-Scattering Mirror

  • Jo, Min-Sik;Shim, Kyu-Min;Kim, Hoe-Young;Cho, Hyun-Ju;Jun, Gab-Song;Son, Seong-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.2-56
    • /
    • 2001
  • For the improvement of minimum sensing angular velocity of ring laser gyro, the influence of a low-scattering mirror application to laser resonator was investigated. Super polishing technique was employed for the fine mirror substrates of less than 1-${\AA}$-rms roughness. Mirror coating using ion-beam sputtering coating machine produced low-scattering mirror less than 30-ppm scattering. As a result of the mirror application to ring laser, the minimum sensing angular velocity of the gyro was improved down to about 0.1 deg/sec.

  • PDF

A Comparision of the Twisting of Extrusion of Elliptical Shape with that of S shape from Round Billet by DEFORM-3DTM Software (원형빌렛으로부터 타원단면 및 S단면 가진제품의 압출가공의 DEFORM-3DTM에 의 한 비틀림 해석 비교)

  • 김진훈;김한봉;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.136-139
    • /
    • 1997
  • Applications of commercial software DEFORM-3DTM for 3-D simulation in extrusion process are developed for the analysis of twisting of extruded products. Because the elliptical shape has at least one line symmetry, the twisting is not occured during the extrusion. But, the results of extrusion simulation of the elliptical shape show that the twisted boundary of the die surface makes the material inside die surface rotate with the constant angular velocity. Otherwise, the simulation results of the S shaped product show that the twisting can be occured by the only 180$^{\circ}$rotation symmetry of S shape without no line symmetry and show that the angular velocity increases by the only 180$^{\circ}$rotation symmetry without no twisted die surface between on the die entrance section and on the die exit section. The results of the analysis show that the angular velocity of the extruded product changes with die length and friction condition.

  • PDF

Stable walking of biped robots using one angular velocity sensor (각속도 센서를 이용한 이족로봇의 안정적인 보행 구현)

  • Oh, Sung-Nam;Yun, Dong-Woo;Son, Young-Ik;Kim, Kab-Il;Lim, Seung-Chul;Kang, Hwan-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.309-311
    • /
    • 2006
  • This paper aims to provide a way to improve dynamic stability of biped robots against undesirable disturbances. By using an angular velocity sensor on its shoulder, we can make a medium-sized biped robot walk stably against an impulsive disturbance. The measured signal from the sensor in used for compensating the reference angles of ankle, knee, and pelvis joints. An experiment shows that the stability of the robot is much enhanced by using a cheap sensor and simple algorithm. This kind of research helps biped robots walk more stably in real environments.

  • PDF

EFFECTS OF OSCILLATING FREQUENCY ON TAYLOR VORTICES (실린더의 회전 주파수 진동이 Taylor 와류에 미치는 영향)

  • Kang, Chang-Woo;Yang, Kyung-Soo;Mutabazi, Innocent
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.95-105
    • /
    • 2009
  • We study time-periodic Taylor-Couette flow with the outer cylinder at rest and the inner one oscillating with a mean angular velocity. Varying the frequency of inner cylinder, we investigate the change of Taylor vortices at a given amplitude and a mean angular velocity. With a small frequency of modulation, we find that Taylor vortices appear and disappear periodically. With a higher frequency, Taylor vortices do not disappear, but the intensity of Taylor vortices modulates periodically. As the frequency increases, Taylor vortices modulate harmonically.