• Title/Summary/Keyword: ANGULAR-VELOCITY

Search Result 914, Processing Time 0.024 seconds

A Study on the Sensorless Speed Control and Its Application of DC Motor (DC 모터의 센서리스 속도제어 및 그 응용에 관한연구)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.292-299
    • /
    • 1999
  • DC motors are widely used in many industrial fields as the actuator of the robot and the driving power motors of the electrical vehicle, Usually in the sensors of DC motors such as the encoder the tachogenerator and the potentiometer etc. are applied, But usage of these sensors results in the increased price and operating cost such that the application of the motors are limitted. To solve this problem another method to construct low cost control system is investigates. In this paper a new speed control method for DC motor is proposed. This method uses motor parameters instead of using speed or position sensors. In this way the angular velocity is estimated by the measure-ment values of the armature voltage and current instead of measuring the sensor signal. This paper presents an alorithm for estimating the angular velocity of DC motor The effectiveness of the proposed method is verified by experimental results. Also the applicability of the proposed method is presented by applying to the velocity contol of a wheeled mobile robot.

  • PDF

A Study on Robust Control of Mobile Robot with Single wheel Driving Robot for Process Automation (공정 자동화를 위한 싱글 휠 드라이빙 모바일 로봇의 견실제어에 관한 연구)

  • Shin, Haeng-Bong;Cha, BO-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • This paper presents a new approach to control of stable motion of single wheel driving robot system of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel. This robot doesn'thave any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Lagrange equations was applied to derive the dynamic equations of the one wheel driving robot to implement the dynamic speed control of the mobile robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and optical regulator are utilized to prove the reliability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based robust controller has been adopted to reduce the vibration by the situation function. The optimal controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the driving wheel. The control performance of the control systems from a single dynamic model has been illustrated by the real experiments.

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.

Wear Simulation of Engine Bearings in the Beginning of Firing Start-up cycle (파이어링 시동 사이클 초기에서의 엔진 베어링 마모 시뮬레이션)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.244-266
    • /
    • 2019
  • The purpose of this study is to estimate the wear volumes of engine journal bearings operating at variable angular velocity of a shaft in the beginning of firing start-up cycle. To do this, first we find the potential region of wear scar on engine journal bearings where the applied bearing load and crank shaft velocity are variable. The potential wear regions are discovered by finding minimum oil film thickness at every crank angle existing below most oil film thickness scaring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Then we calculate the wear volume from the wear depth and two wear angles decided by the magnitude of each film thickness lower than MOFTSW at every crank angle. The results show that the expected wear region is located at a few bearing angles after and/or behind the upper center of a big-end bearing and the lower center of a main bearing. And the real wear region is similar to the estimated wear region. Further we find that the wear scar on an engine journal bearing may occur at re-starting time after switch-off of a start motor especially under the condition of high oil temperature.

Effect of Wearing a Thermal Compression Sleeve on Isokinetic Strength and Muscle Activity of Wrist Flexors and Extensors

  • Kim, Ki Hong;Jeong, Hwan Jong;Hong, Chan Jeong;Kim, Hyun Sung;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.183-191
    • /
    • 2022
  • The purpose of this study, the wearing conditions of functional pressure clothing applied with the thermotherapy device were determined by three types (NW, CW, TCW) and the difference in isokinetic strength, muscle activity around the forearm was investigated and the effects of products mixed with thermotherapy and pressure treatment were verified. Ten men in their 20s were selected as subjects, and all subjects were randomly assigned three wearing conditions, and wrist flexion/extension exercise was performed at 30° and 90° angular velocity in isokinetic equipment. Peak torque, average power, and EMG were measured during exercise in all conditions. For peak torque, CW was significantly highest at velocity of 30°/sec flexion. Average power showed no significant difference by condition. In the angular velocity of 90°/sec, flexion was significantly higher in CW and TCW than in NW. As a result, wearing clothes with pressure effect and heat effect can show high efficiency in high muscle strength development and fast contraction activity during low speed exercise, and it is thought that it can show improvement of exercise ability through efficient recruitment of motor unit.

Kinematic Analysis of Elite Athletes in Men's Shot-Put at World Championships, Daegu 2011 (2011 대구세계육상선수권대회 남자 포환던지기 결선경기의 운동학적 분석)

  • Oh, Cheong-Hwan;Shin, Eui-Su;Choi, Su-Nam;Jeong, Ik-Su;Bae, Jae-Hee;Lee, Jeong-Tea;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.631-638
    • /
    • 2011
  • This study had two purposes. The first was to analyze the period of the final record set by the male shot-putters in the IAAF World Championships, Daegu 2011 from the point of view of kinematics. The other was to identify an efficient movement for shot putting based on the analysis. The research used the eight finalists of in the championship as subjects. We analyzed the seven most important kinematic factors in shot putting based on the type of technique: the execution time of the delivery phase, release velocity, release angle, release, center of mass (COM) velocity, and shot trajectories. The analytical results showed the following average figures for the record 12 meters: execution time of the delivery phase: (0.19 s), release height: (2.06 m), release angle: ($34.68^{\circ}$), release velocity: (13.25 m/s), angular velocity of shoulder: ($922.38^{\circ}/s$), and angular velocity of pelvis: ($479.50^{\circ}/s$). Further, the results showed that the highest COM velocity was 2.25 m/s and the shot trajectories were close to a straight line in the release phase.

State Estimation for Underwater Vehicles by Means of Cascade Observers (계단식 관측기에 의한 수중 차의 상태추정)

  • Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.168-173
    • /
    • 2009
  • This paper investigates the estimation problem of vehicle velocity and propeller angular velocity on the underwater vehicle. Inspired by but different from a high-gain observer, the cascade observer features a cascade structure and adaptive observer gains. In doing so the cascade observer attempts to overcome some of the typical problems that may pose to a high-gain observer. As in the case of a high-gain observer, the cascade observer structure is simple and universal in the sense that it is independent of the system dynamics and parameters. A cascade observer is used for the estimation of velocity from measured position. In the 1st step of the observer, the output is estimated, and the 1st order derivative of measured output is estimated via the 2nd step of the observer. Also, nth order derivative of the output is estimated in the (n+1)th step of the observer. It is shown that the proposed observer guarantees globally asymptotical stability. By simulation results, the proposed observer scheme for the estimations of vehicle velocity and propeller angular velocity shows better performance than the scheme based on the existing observer.

Implementation of a Falls Recognition System Using Acceleration and Angular Velocity Signals (가속도 및 각속도 신호를 이용한 낙상 인지 시스템 구현)

  • Park, Geun-Chul;Jeon, A-Young;Lee, Sang-Hoon;Son, Jung-Man;Kim, Myoung-Chul;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.54-64
    • /
    • 2013
  • In this study, we developed a falling recognition system to transmit SMS data through CDMA communication using a three axises acceleration sensor and a two axises gyro sensor. 5 healthy men were selected into a control group, and the fall recognition system using the three axises acceleration sensor and the two axises gyro sensor was devised to conduct an experiment. The system was attached to the upper of their sternum. According to the experiment protocol, the experiment was carried out 3 times repeatedly divided into 3 specific protocols: falling during gait, falling in stopped state, and falling in everyday life. Data obtained in the falling recognition system and LabVIEW 8.5 were used to decide if falling corresponds to that regulated in an analysis program applying an algorithm proposed in this study. In addition, results from falling recognition were transmitted to designated cellular phone in a SMS (Shot Message Service) form. These research results show that an erroneous detection rate of falling reached 19% in applying an acceleration signal only; 6% in applying an angular velocity; and 2% in applying a proposed algorithm. Such finding suggests that an erroneous detection rate of falling is improved when the proposed algorithm is applied incorporated with acceleration and angular velocity. In this study therefore, we proposed that a falling recognition system implemented in this study can make a contribution to the recognition of falling of the aged or the disabled.

The study on the thermal deformation of the rotating rollers in strip continuous casting process (박판 연속 주조과정에 있어서 회전 로울러의 열변형에 관한 연구)

  • 백남주;이상매
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.913-922
    • /
    • 1987
  • In this paper the solidification phenomena at the molten pool has been modeled and simulated in terms with the one dimensional unsteady-state heat transfer of the solid and molten phase and the pressure distribution in the solid phase for the twin-roller continuous casting of Sn-15% Pb. The further purpose of this study was to effectively analyze the thermal and mechanical deformation of roll applying the results of the heat transfer and the pressure distribution to the boundary conditions. The strip thickness of rapidly solidified metallic strip decreases with increasing angular velocity of the roller and with increasing initial roll gap. For this reason the roll spacing and angular velocity of the rolls are considered to be main variables. The recommended optimal casting regimes for continuous strip dimensions is near 0.8mm-1.0mm in thickness at the given angular velocity .omega.=2.0 rad/sec. Results of the experiment using Sn-15% Pb are compared with model predictions. The calculated roll deformation has been in good agreement with the observed value of roll deformatiion. All the deformation. All the deformation of the roller is within the elastic range, the plastic yielding are not occured. However, these elastic stresses are sufficient to take place of the shortened roller life by the thermal fatigue and a notch fatigue. The higher cooling rates were obtained by a twin-roller quenching technique. Also the quenched microstructure of the rapidly solidified shell was verified.

Detection of Rotations in Jump Rope using Complementary Filter (상보필터를 이용한 줄넘기 회전운동 검출)

  • Yoo, Byeong-Hyeon;Heo, Gyeongyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • There are various methods to count the number of repetitive motions such as jump rope. Most of the methods use features extracted from the time-varying waves of acceleration or angular velocity, which is the main feature in the count of rotations in jump rope. However, there exist several variables and it is not easy to find the count with a single sensor. For example, accelerometer is susceptible to noise and vibration, and the angular velocity may cause a drift phenomenon, which is the main cause of the inaccurate count of jump rope rotation. In this paper, complementary filter is used to consider two sensors simultaneously and complement each other, which results in more accurate count in jump rope rotation. The proposed method can count the exact number of jump rope rotation compared to other existing methods only using one sensor value, which is confirmed through experimental results.