• Title/Summary/Keyword: ANFIS method

Search Result 105, Processing Time 0.023 seconds

A Design of GA-based TSK Fuzzy Classifier and Its Application (GA 기반 TSK 퍼지 분류기의 설계와 응용)

  • 곽근창;김승석;유정웅;김승석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.754-759
    • /
    • 2001
  • In this paper, we propose a TSK(Takagi-Sugeno-Kang)-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy c-Means) clustering, ANFIS(Adaptive Neuro-Fuzzy Inference System) and hybrid GA(Genetic Algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive GA) and RLSE(Recursive Least Square Estimate). Finally, we applied the proposed method to Iris data classificationl problems and obtained a better performance than previous works.

  • PDF

Optimization of shear connectors with high strength nano concrete using soft computing techniques

  • Sedghi, Yadollah;Zandi, Yosef;Paknahad, Masoud;Assilzadeh, Hamid;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.595-606
    • /
    • 2021
  • This paper conducted mainly for forecasting the behavior of the shear connectors in steel-concrete composite beams based on the different factors. The main goal was to analyze the influence of variable parameters on the shear strength of C-shaped and L-shaped angle shear connectors. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for the mentioned shear strength forecasting. Five inputs are considered: height, length, thickness of shear connectors together with concrete strength and respective slip of the shear connectors after testing. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the shear strength of C-shaped and L-shaped angle shear connectors. The results show that the forecasting methodology developed in this research is useful for enhancing the multiple performances characterizing in the shear strength prediction of C and L shaped angle shear connectors analyzing.

Design of Neuro-Fuzzy based Intelligent Inference Algorithm for Energy Management System with Legacy Device (비절전 가전기기를 위한 에너지 관리 시스템의 뉴로-퍼지 기반 지능형 추론 알고리즘 설계)

  • Choi, In-Hwan;Yoo, Sung-Hyun;Jung, Jun-Ho;Lim, Myo-Taeg;Oh, Jung-Jun;Song, Moon-Kyou;Ahn, Choon-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.779-785
    • /
    • 2015
  • Recently, home energy management system (HEMS) for power consumption reduction has been widely used and studied. The HEMS performs electric power consumption control for the indoor electric device connected to the HEMS. However, a traditional HEMS is used for passive control method using some particular power saving devices. Disadvantages with this traditional HEMS is that these power saving devices should be newly installed to build HEMS environment instead of existing home appliances. Therefore, an HEMS, which performs with existing home appliances, is needed to prevent additional expenses due to the purchase of state-of-the-art devices. In this paper, an intelligent inference algorithm for EMS at home for non-power saving electronic equipment, called legacy devices, is proposed. The algorithm is based on the adaptive network fuzzy inference system (ANFIS) and has a subsystem that notifies retraining schedule to the ANFIS to increase the inference performance. This paper discusses the overview and the architecture of the system, especially in terms of the retraining schedule. In addition, the comparison results show that the proposed algorithm is more accurate than the classic ANFIS-based EMS system.

An adaptive neuro-fuzzy inference system (ANFIS) model to predict the pozzolanic activity of natural pozzolans

  • Elif Varol;Didem Benzer;Nazli Tunar Ozcan
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.85-95
    • /
    • 2023
  • Natural pozzolans are used as additives in cement to develop more durable and high-performance concrete. Pozzolanic activity index (PAI) is important for assessing the performance of a pozzolan as a binding material and has an important effect on the compressive strength, permeability, and chemical durability of concrete mixtures. However, the determining of the 28 days (short term) and 90 days (long term) PAI of concrete mixtures is a time-consuming process. In this study, to reduce extensive experimental work, it is aimed to predict the short term and long term PAIs as a function of the chemical compositions of various natural pozzolans. For this purpose, the chemical compositions of various natural pozzolans from Central Anatolia were determined with X-ray fluorescence spectroscopy. The mortar samples were prepared with the natural pozzolans and then, the short term and the long term PAIs were calculated based on compressive strength method. The effect of the natural pozzolans' chemical compositions on the short term and the long term PAIs were evaluated and the PAIs were predicted by using multiple linear regression (MLR) and adaptive neuro-fuzzy inference system (ANFIS) model. The prediction model results show that both reactive SiO2 and SiO2+Al2O3+Fe2O3 contents are the most effective parameters on PAI. According to the performance of prediction models determined with metrics such as root mean squared error (RMSE) and coefficient of correlation (R2), ANFIS models are more feasible than the multiple regression model in predicting the 28 days and 90 days pozzolanic activity. Estimation of PAIs based on the chemical component of natural pozzolana with high-performance prediction models is going to make an important contribution to material engineering applications in terms of selection of favorable natural pozzolana and saving time from tedious test processes.

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

Fault Diagnosis of 3 Phase Induction Motor Drive System Using Clustering (클러스터링 기법을 이용한 3상 유도전동기 구동시스템의 고장진단)

  • Park, Jang-Hwan;Kim, Sung-Suk;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.70-77
    • /
    • 2004
  • In many industrial applications, an unexpected fault of induction motor drive systems can cause serious troubles such as downtime of the overall system heavy loss, and etc. As one of methods to solve such problems, this paper investigates the fault diagnosis for open-switch damages in a voltage-fed PWM inverter for induction motor drive. For the feature extraction of a fault we transform the current signals to the d-q axis and calculate mean current vectors. And then, for diagnosis of different fault patterns, we propose a clustering based diagnosis algorithm The proposed diagnostic technique is a modified ANFIS(Adaptive Neuro-Fuzzy Inference System) which uses a clustering method on the premise of general ANFIS's. Therefore, it has a small calculation and good performance. Finally, we implement the method for the diagnosis module of the inverter with MATLAB and show its usefulness.

Development of Blood Pressure Measurement Method Using ANFIS (ANFIS를 이용한 전자 혈압 측정 알고리즘 개발)

  • Kwon Seok-Young;Lee Dae-Jong;Chung Myung-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.219-222
    • /
    • 2006
  • 본 논문에서는 ANFIS를 이용한 전자혈압계 측정알고리즘을 제안한다. 이를 위해 본 연구에서는 우선, 기존의 팔뚝형 커프와 수동 공기주입기 방식의 전자혈압 측정시스템을 구축하여 혈압 신호를 실시간으로 취득하였다. 다음단계로 취득된 실시간 혈압신호를 이용하여 최고혈압과 최저 혈압을 측정하기 위해 MAA(Maximum Amplitude Algorithm) 기법을 이용한다. 그러나, MAA기법은 개인의 특성을 고려하지 않고 일정한 비율을 고정시키므로 정확한 혈압을 측정하는데 한계가 있다. 따라서, 본 논문에서는 MAA에 의해 측정된 최고혈압과 최저혈압을 ANFIS를 이용하여 학습시키므로서 이러한 문제점을 해결하고자 한다. 제안된 알고리즘의 효율성을 보이기 위해 다양한 혈압신호에 대해 실험한 결과 기존의 MAA에 의한 방법보다 향상된 결과를 나타냈다.

  • PDF

A Design of GA-based Fuzzy Controller and Truck Backer-Upper Control (GA 기반 퍼지 제어기의 설계 및 트럭 후진제어)

  • Kwak, Keun-Chang;Kim, Ju-Sik;Jeong, Su-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.

Control of Rotary Inverted Pendulum using ANFIS (ANFIS를 이용한 수평회전형 도립진자의 제어)

  • Min, Hyun-Ki;Ryu, Chang-Wan;Ko, Joe-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.681-683
    • /
    • 1998
  • Fuzzy Inference System is to trans late and be concrete with human expert in to mathematical equation. It is easy to be applied for Nonlinear System and the know ledge can be applied at that. With using the rule according to the Knowledge, when it is realized simulations must be required repeatedly and small vibration is generated in steady state, too. In this paper, we applied the system to the methodology of optimization with self-learn ing by us ing ANFIS(Adaptive Network-based Fuzzy Inference System) which makes use of back-propagation and least square method at a first order Sugeno Fuzzy System. In order to show the effect of Algorithm, we demonstrated it by us ing Rotary Inverted Pendulum.

  • PDF