• Title/Summary/Keyword: AMPK Pathway

Search Result 116, Processing Time 0.024 seconds

Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Adipogenesis via AMPK Activation in 3T3-L1 Cells (AMPK 활성화를 통한 (-)-Epigallocatechin-3-gallate의 지방세포분화 억제 효과)

  • Kim, Younghwa
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.1035-1041
    • /
    • 2017
  • (-)-Epigallocatechin-3-gallate (EGCG) is a major catechin found in green tea. It is reported that EGCG possesses various health benefits including anti-cancer, antioxidant, anti-diabetes, and anti-obesity. The objective of this study was to investigate the effects of EGCG on adipogenesis via activation of AMP-activated protein kinase (AMPK) pathway in 3T3-L1 preadipocytes. In order to determine the effects of EGCG on adipogenesis, preadipocyte differentiation was induced in the presence or absence of EGCG ($0{\sim}100{\mu}M$) for a period of 6 days. EGCG significantly inhibited fat accumulation and suppressed the expression of adipogenic specific proteins including peroxisome proliferator-activated receptor (PPAR)-${\gamma}$. Also, EGCG markedly increased the activation of AMPK and acetyl-CoA carboxylase (ACC) and the production of intracellular reactive oxygen species (ROS). However, any pretreatment with a specific AMPK inhibitor, compound C, abolished the inhibitory effects of the EGCG on $PPAR{\gamma}$ expression. This study suggests that EGCG has anti-adipogenic effects through modulation of the AMPK signaling pathway and therefore, may be a promising antiobesity agent.

Antioxidant effect of Raphani Semen (Raphanus sativus L.) (나복자의 항산화 효과)

  • Seon Been, Bak;Seung-Ho, Kang;Kwang-Il, Park;Won-Yung, Lee
    • Herbal Formula Science
    • /
    • v.31 no.1
    • /
    • pp.41-51
    • /
    • 2023
  • Objectives : Raphani Semen (Raphanus sativus L.) is known for the various beneficial effects in Korean medicine. This study aimed to investigate the effect of Raphani Semen extract (RSE) against arachidonic acid (AA)+iron-induced oxidative stress in cells. Methods : Ingredients, their target information, oxidative stress liver injury-related proteins was obtained from various network pharmacology databases and software. A hypergeometric test and enrichment analysis were conducted to evaluate associations between protein targets of RSE. The cell viability was assessed by MTT assay, and immunoblot analysis was used to confirm the molecular mechanisms. Results : A compound-target network of RSE was constructed, which consisted of 336 edges between 18 ingredients and 123 protein targets. PI3K-Akt signaling pathway, ErbB signaling pathway, HIF-1 signaling pathway, PPAR signaling pathway, and AMPK signaling pathway was significantly associated with protein targets of RSE. RSE protected HepG2 cells against AA+iron-induced oxidative stress as mediated with AMPK signaling. Conclusion : RSE was found to protect the cells against oxidative stress via the AMPK signaling pathway.

Saponins from Rubus parvifolius L. Induce Apoptosis in Human Chronic Myeloid Leukemia Cells through AMPK Activation and STAT3 Inhibition

  • Ge, Yu-Qing;Xu, Xiao-Feng;Yang, Bo;Chen, Zhe;Cheng, Ru-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5455-5461
    • /
    • 2014
  • Background: Saponins are a major active component for the traditional Chinese medicine, Rubus parvifolius L., which has shown clear antitumor activities. However, the specific effects and mechanisms of saponins of Rubus parvifolius L. (SRP) remain unclear with regard to human chronic myeloid leukemia cells. The aim of this study was to investigate inhibition of proliferation and apoptosis induction effects of SRP in K562 cells and further elucidate its regulatory mechanisms. Materials and Methods: K562 cells were treated with different concentrations of SRP and MTT assays were performed to determine cell viability. Apoptosis induction by SRP was determined with FACS and DAPI staining analysis. Western blotting was used to detect expression of apoptosis and survival related genes. Specific inhibitors were added to confirm roles of STAT3 and AMPK pathways in SRP induction of apoptosis. Results: Our results indicated that SRP exhibited obvious inhibitory effects on the growth of K562 cells, and significantly induced apoptosis. Cleavage of pro-apoptotic proteins was dramatically increased after SRP exposure. SRP treatment also increased the activities of AMPK and JNK pathways, and inhibited the phosphorylation expression level of STAT3 in K562 cells. Inhibition of the AMPK pathway blocked the activation of JNK by SRP, indicating that SRP regulated the expression of JNK dependent oon the AMPK pathway. Furthermore, inhibition of the latter significantly conferred resistance to SRP pro-apoptotic activity, suggesting involvement of the AMPK pathway in induction of apoptosis. Pretreatment with a STAT3 inhibitor also augmented SRP induced growth inhibition and cell apoptosis, further confirming roles of the STAT3 pathway after SRP treatment. Conclusions: Our results demonstrated that SRP induce cell apoptosis through AMPK activation and STAT3 inhibition in K562 cells. This suggests the possibility of further developing SRP as an alternative treatment option, or perhaps using it as adjuvant chemotherapeutic agent for chronic myeloid leukemia therapy.

Ethanol Extracts of Citrus Peel Inhibits Adipogenesis through AMPK Signaling Pathway in 3T3-L1 Preadipocytes (진피 에탄올 추출물의 AMPK signaling pathway를 통한 3T3-L1 지방전구세포의 adipogenesis 억제에 관한 연구)

  • Jo, Hyun Kyun;Han, Min Ho;Hong, Su Hyun;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.285-292
    • /
    • 2015
  • Citrus peel (CP) is used as a traditional herb with diverse beneficial pharmacological activities, such as anti-inflammatory, anti-oxidant, and anti-allergic effects. However, the anti-obesity effects of citrus peel are poorly defined. The aim of this study was to evaluate ethanol extracts of citrus peel (EECP) for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. The aim of this study was to evaluate an EECP for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. Treatment with EECP significantly suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet number and lipid content and an accumulation of cellular triglyceride. EECP exhibited potential adipogenesis inhibition and downregulated the expression of pro-adipogenic transcription factors, such as sterol regulatory elementbinding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancerbinding proteins α (C/EBPα) and C/EBPβ, and adipocyte expressed genes, such as adipocyte fatty acid binding protein (aP2) and Leptin. In addition, EECP treatment effectively activated the AMP-activated protein kinase (AMPK) signaling pathway; however, compound C, a specific inhibitor of AMPK, significantly reduced the EECP-induced inhibition of adipogenesis. Taken together, these results indicate EECP showed strong anti-obesity effects through the AMPK signaling pathway, and further studies will be needed to identify the active compounds that confer the anti-obesity activity of EECP.

EGCG Blocked Phenylephrin-Induced Hypertrophy in H9C2 Cardiomyocytes, by Activating AMPK-Dependent Pathway

  • Cai, Yi;Zhao, Li;Qin, Yuan;Wu, Xiao-Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.203-210
    • /
    • 2015
  • AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Previous studies have shown that activation of AMPK results in suppression of cardiac myocyte hypertrophy via inhibition of the p70S6 kinase (p70S6K) and eukaryotic elongation factor-2 (eEF2) signaling pathways. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac hypertrophy. However, the molecular mechanisms has not been well investigated. In this study, we found that EGCG could significantly reduce natriuretic peptides type A (Nppa), brain natriuretic polypeptide (BNP) mRNA expression and decrease cell surface area in H9C2 cardiomyocytes stimulated with phenylephrine (PE). Moreover, we showed that AMPK is activated in H9C2 cardiomyocytes by EGCG, and AMPK-dependent pathway participates in the inhibitory effects of EGCG on cardiac hypertrophy. Taken together, our findings provide the first evidence that the effect of EGCG against cardiac hypertrophy may be attributed to its activation on AMPK-dependent signaling pathway, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.

Cryptotanshinone promotes brown fat activity by AMPK activation to inhibit obesity

  • Jie Ni;Aili Ye;Liya Gong;Xiafei Zhao;Sisi Fu;Jieya Guo
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.479-497
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Activating brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can protect against obesity and obesity-related metabolic conditions. Cryptotanshinone (CT) regulates lipid metabolism and significantly ameliorates insulin resistance. Adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), a receptor for cellular energy metabolism, is believed to regulate brown fat activity in humans. MATERIALS/METHODS: The in vivo study included high-fat-fed obese mice administered orally 200/400 mg/kg/d CT. They were evaluated through weight measurement, the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test (IPITT), cold stimulation test, serum lipid (total cholesterol, triglycerides, and low-density lipoprotein) measurement, hematoxylin and eosin staining, and immunohistochemistry. Furthermore, the in vitro study investigated primary adipose mesenchymal stem cells (MSCs) with incubation of CT and AMPK agonists (acadesine)/inhibitor (Compound C). Cells were evaluated using Oil Red O staining, Alizarin red staining, flow cytometry, and immunofluorescence staining to identify and observe the osteogenic versus adipogenic differentiation. Quantitative real-time polymerase chain reaction and the Western blot were used to observe related gene expression. RESULTS: In the diet-induced obesity mouse model mice CT suppressed body weight, food intake, glucose levels in the IPGTT and IPTT, serum lipids, the volume of adipose tissue, and increased thermogenesis, uncoupling protein 1, and the AMPK pathway expression. In the in vitro study, CT prevented the formation of lipid droplets from MSCs while activating brown genes and the AMPK pathway. AMPK activator enhanced CT's effects, while the AMPK inhibitor reversed the effects of CT. CONCLUSION: CT promotes adipose tissue browning to increase body thermogenesis and reduce obesity by activating the AMPK pathway. This study provides an experimental foundation for the use of CT in obesity treatment.

LKB1/AMPK/mTOR Signaling Pathway in Non-small-cell Lung Cancer

  • Han, Dong;Li, Shao-Jun;Zhu, Yan-Ting;Liu, Lu;Li, Man-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4033-4039
    • /
    • 2013
  • Links between cancer and metabolism have been suggested for a long time but compelling evidence for this hypothesis came from the recent molecular characterization of the LKB1/AMPK signaling pathway as a tumor suppressor axis. Besides the discovery of somatic mutations in the LKB1 gene in certain type of cancers, a critical emerging point was that the LKB1/AMPK axis remains generally functional and could be stimulated by pharmacological molecules such as metformin in cancer cells. In addition, AMPK plays a central role in the control of cell growth, proliferation and autophagy through the regulation of mTOR activity, which is consistently deregulated in cancer cells. Targeting of AMPK/mTOR is thus an attractive strategy in the development of therapeutic agents against non-small-cell lung cancer (NSCLC). In this review, the LKB1/AMPK/mTOR signaling pathway is described, highlighting its protective role, and opportunities for therapeutic intervention, and clinical trials in NSCLC.

Resveratrol Downregulates Acetyl-CoA Carboxylase $\alpha$ and Fatty Acid Synthase by AMPK-mediated Downregulation of mTOR in Breast Cancer Cells

  • Park, Sahng-Wook;Yoon, Sa-Rah;Moon, Jong-Seok;Park, Byeong-Woo;Kim, Kyung-Sup
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1047-1051
    • /
    • 2008
  • Overexpression of HER2 in breast cancer cells is considered to induce the expression of acetyl-CoA carboxylase $\alpha$ (ACACA) and fatty acid synthase (FASN) through activation of mammalian target of rapamycin (mTOR) signaling pathway. Resveratrol, a red wine polyphenol, has been shown to induce apoptosis in several cancers by interfering in several signaling pathways. Present study elucidated the mechanism by which resveratrol downregulates ACACA and FASN in breast cancer cells. Resveratrol activated AMP-activated protein kinase (AMPK) and downregulated mTOR in BT-474 cells. These effects of resveratrol were mimicked by AICAR, an AMPK activator, and exogenously expressed constitutively active AMPK, while they were abolished by a dominant-negative mutant of AMPK. The downregulation of mTOR was not accompanied with changes in Akt, the upstream regulator of mTOR. These findings indicate that the downregulation of ACACA and FASN by resveratrol is mediated by the downregulation of mTOR signaling pathway via activation of AMPK.

Facilitation of Glucose Uptake by Lupeol through the Activation of the PI3K/AKT and AMPK Dependent Pathways in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로의 활성화를 통한 루페올의 포도당 흡수촉진 효과)

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.86-93
    • /
    • 2022
  • Lupeol is a type of pentacyclic triterpene and has been reported to have pharmacological activities against various diseases; however, the effect of lupeol on glucose absorption has not been elucidated yet. This study aimed to investigate the effect of lupeol on glucose uptake in 3T3-L1 adipocytes. Lupeol significantly facilitated glucose uptake by translocating glucose transporter type 4 (GLUT4) to the plasma membrane of the 3T3-L1 adipocytes, which was related to activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and 5 'adenosine monophosphate-activated protein kinase (AMPK) pathways. In the PI3K/AKT pathway, lupeol stimulates the phosphorylation of insulin receptor substrate 1 (IRS-1), which activates PI3K. Its activation by lupeol promotes the phosphorylation of AKT, but not the atypical protein kinase C isoforms ζ and λ. Lupeol also promoted the phosphorylation of AMPK. The activation of AMPK increased the expressions of the plasma membrane GLUT4 and the intracellular glucose uptake. The increase in the glucose uptake by lupeol was suppressed by wortmannin (PI3K inhibitor) and compound C (AMPK inhibitor) in the 3T3-L1 adipocytes. The results indicate that lupeol can facilitate glucose uptake by increasing insulin sensitivity through the stimulation of the expression of plasma membrane glucose transporter type 4 via the PI3K/AKT and AMPK pathways in the 3T3-L1 adipocytes.

Effects of Endurance Exercise and Ginsenoside Rb1 on AMP-Activated Protein Kinase, Phosphatidylinositol 3-Kinase Expression and Glucose Uptake in the Skeletal Muscle of Rats (지구성 운동과 Ginsenoside Rb1가 쥐 골격근의 AMP-Activated Protein Kinase(APMK), Phosphatidylinositol 3-Kinase(PI3K) 발현 및 Glucose Uptake에 미치는 영향)

  • Jung, Hyun-Lyung;Shin, Young Ho;Kang, Ho-Youl
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1197-1203
    • /
    • 2013
  • This study investigated the effects of endurance exercise and ginsenoside $Rb_1$ on AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K) protein expression and glucose uptake in the skeletal muscle of rats. A total of 32 rats were randomly divided into four groups: CON (Control group, n=8), Ex (Exercise group; 25 m/min for 1 h, 6 days/week, 2 weeks, n=8), $Rb_1$ (Ginsenoside $Rb_1$ group; n=8), and $Rb_1/Ex$ ($Rb_1$+Exercise group, n=8). The $Rb_1$ and $Rb_1/Ex$ groups were incubated in ginsenoside $Rb_1$ (KRBP buffer, $100{\mu}g/mL$) for 60 min after a 2-week experimental treatment. After 2 weeks, the expression of phosphorylated $AMPK{\alpha}$ $Thr^{172}$, total $AMPK{\alpha}$, the p85 subunit of PI3K, pIRS-1 $Tyr^{612}$, and pAkt $Ser^{473}$ were determined in the soleus muscle. Muscle glucose uptake was measured using 2-deoxy-D-[$^3H$] glucose in epitroclearis muscle. Muscle glucose uptake was significantly higher in the three experimental groups (Ex, $Rb_1$, $Rb_1/Ex$) compared to the CON group (P<0.05). The expression of $tAMPK{\alpha}$ and $pAMPK{\alpha}$ $Thr^{172}$ was significantly higher in the Ex, $Rb_1$, and $Rb_1/Ex$ groups compared to the CON group (P<0.05). The expression of pAkt $Ser^{473}$ was significantly higher in the $Rb_1$ group compared to the CON and EX groups. However, the expression of pIRS-1 $Tyr^{612}$ and the p85 subunit of PI3K were not significantly different between the four groups. Overall, these results suggest that ginsenoside $Rb_1$ significantly stimulates glucose uptake in the skeletal muscle of rats through increasing phosphorylation in the AMPK pathway, similar to the effects of exercise.