• 제목/요약/키워드: AMPA receptor

검색결과 54건 처리시간 0.022초

족삼리 전침자극에 의한 흰쥐 hypothalamus의 유전자 발현 profile 분석 (Gene Expression Profile of Rat Hypothalamus Treated with Electroacupuncture at ST36 Acupoint)

  • 노삼웅;이기석;최기순;나영인;홍무창;신민규;민병일;배현수
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1041-1054
    • /
    • 2004
  • Electroacupuncture (EA) has been reported to increase pain threshold, and to enhance the NK cell activity by up-regulation of IFN-γ and endogenous β-endolphin. For the purpose of understanding the molecular mechanism of EA stimulation, we analyzed the gene expression profile of rat hypothalamus, treated on Zusanli (ST36) with EA, in comparison with control group by oligonucleotide chip microarray (Affymetrix GeneChip Rat Neurobiology U34 Array) and real-time RT-PCR. Sprague-Dawley (S-D) male rats were stimulated at the Zusanli (ST36) acupoint in restriction holder. Simultaneously the control group was given only holder stress without EA stimulation. In order to prove the appropriateness of EA treatment, we measured spleen NK cell activity with standard 51Cr release assay. NK cell activity of EA group was significantly increased comparing to control group. The microarray and PCR results show that EA treatment up-regulates expression of genes associated with 1) nerve growth such as NGF induced factor A and VGF, 2) signal transduction such as 5HT3 receptor subunit, AMPA receptor binding protein and Na-dependent neurotransmitter transporter, and 3) anti-oxidation such as superoxide dismutase and glutathione S-transferase. In addition, the activity of the anti-oxidative enzyme, SOD of hypothalamus, liver and RBC was enhanced compared to that of control. The list of differentially expressed genes may implicate further insight on the mechanism of acupuncture effects.

제5효후근을 절단한 백서에서 제5요척수신경의 신경손상이나 전기자극에 의한 기계적 과민통 생성에 있어서 말초 글루타민산 수용기의 역할 (Role of Peripheral Glutamate Receptors to Mechanical Hyperalgesia following Nerve Injury or Antidromic Stimulation of L5 Spinal Nerve in Rats with the Previous L5 Dorsal Rhizotomy)

  • 장준호;남택상;윤덕미;임중우;백광세
    • The Korean Journal of Pain
    • /
    • 제19권1호
    • /
    • pp.33-44
    • /
    • 2006
  • Background: Peripheral nerve injury leads to neuropathic pain, including mechanical hyperalgesia (MH). Nerve discharges produced by an injury to the primary afferents cause the release of glutamate from both central and peripheral terminals. While the role of centrally released glutamate in MH has been well studied, relatively little is known about its peripheral role. This study was carried out to determine if the peripherally conducting nerve impulses and peripheral glutamate receptors contribute to the generation of neuropathic pain. Methods: Rats that had previously received a left L5 dorsal rhizotomy were subjected to a spinal nerve lesion (SNL) or brief electrical stimulation (ES, 4 Hz pulses for 5 min) of the left L5 spinal nerve. The paw withdrawal threshold (PWT) to von Frey filaments was measured. The effects of an intraplantar (i.pl.) injection of a glutamate receptor (GluR) antagonist or agonist on the changes in the SNL- or ES-produced PWT was investigated. Results: SNL produced MH, as evidenced by decrease in the PWT, which lasted for more than 42 days. ES also produced MH lasting for 7 days. MK-801 (NMDAR antagonist), DL-AP3 (group-I mGluR antagonist), and APDC (group-II mGluR agonist) delayed the onset of MH when an i.pl. injection was given before SNL. The same application blocked the onset of ES-induced MH. NBQX (AMPA receptor antagonist) had no effect on either the SNL- or ES-induced onset of MH. When drugs were given after SNL or ES, MK-801 reversed the MH, whereas NBQX, DL-AP3, and APDC had no effect. Conclusions: Peripherally conducting impulses play an important role in the generation of neuropathic pain, which is mediated by the peripheral glutamate receptors.

Brief low [Mg2+]o-induced Ca2+ spikes inhibit subsequent prolonged exposure-induced excitotoxicity in cultured rat hippocampal neurons

  • Kim, Hee Jung;Yang, Ji Seon;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.101-109
    • /
    • 2016
  • Reducing $[Mg^{2+}]_o$ to 0.1 mM can evoke repetitive $[Ca^{2+}]_i$ spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM $[Mg^{2+}]_o$ are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether $Ca^{2+}$ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM $[Mg^{2+}]_o$ for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type $Ca^{2+}$ channel antagonist nimodipine, which blocked 0.1 mM $[Mg^{2+}]_o$-induced $[Ca^{2+}]_i$ spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the $[Ca^{2+}]_i$ spikes. The intracellular $Ca^{2+}$ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. While $G{\ddot{o}}6976$, a specific inhibitor of $PKC{\alpha}$ had no effect on the tolerance, both the $PKC{\varepsilon}$ translocation inhibitor and the $PKC{\zeta}$ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low $[Mg^{2+}]_o$ preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the $[Ca^{2+}]_i$ spike-induced activation of $PKC{\varepsilon}$ and $PKC{\xi}$, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.

Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats

  • Gonzales, Edson Luck T.;Yang, Sung Min;Choi, Chang Soon;Mabunga, Darine Froy N.;Kim, Hee Jin;Cheong, Jae Hoon;Ryu, Jong Hoon;Koo, Bon-Nyeo;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.251-260
    • /
    • 2015
  • Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner.