• Title/Summary/Keyword: AMPA 수용체

Search Result 12, Processing Time 0.021 seconds

Psychiatric Implication for the Regulation of AMPA Receptor (AMPA 수용체의 조절이 지니는 정신과적 의의)

  • Oh, Daeyoung;Lee, Eunee
    • Korean Journal of Biological Psychiatry
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Glutamate receptors are important components of synaptic transmission in the nervous system. Especially, ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors mediate most abundant excitatory synaptic transmission in the brain. There is elaborate mechanism of regulation of AMPA receptors including protein synthesis/degradation, intracellular trafficking, exocytosis/endocytosis and protein modification. In recent studies, it is revealed that functional dysregulation of AMPA receptors are related to major psychiatric disorders. In this review, we describe the structure and function of AMPA receptors in the synapse. We will introduce three steps of mechanism involving trafficking of AMPA receptors to neuronal membrane, lateral diffusion into synapses and synaptic retention by membrane proteins and postsynaptic scaffold proteins. Lastly, we will describe recent studies showing that regulation of AMPA receptors is important pathophysiological mechanism in psychiatric disorders.

Distribution of Glutamate Receptors in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) (한국관박쥐 망막에서 글루타메이트 수용체의 분포 양상)

  • Kwon, Oh-Ju;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.413-418
    • /
    • 2014
  • Purpose: The objective of this study was analyzing the distribution of the excitatory neurotransmitter glutamate receptor to investigate the function in the retina of the greater horseshoe bat. Methods: After retinal tissues of adult greater horseshoe bat were cut into $40{\mu}m$ vertical sections, standard immuno-cytochemical techniques was applied for analysis. Immunofluorescence images were obtained using the Bio-Rad MRC 1024 laser scanning confocal microscope. Results: AMPA (GluR1-4), Kainate (GluR5-7, KA1-2) and NMDA (1, 2A, 2B) mainly distributed in the inner plexiform layer and outer plexiform layer. KA1 receptors have existed not only plexiform layer but also ganglion cell layer. Conclusions: The greater horseshoe bat has same neuron and neurotransmitter to mammalian retina. These findings suggest that bat has a functional retina for visual analysis.

Effect of N-methyl-D-aspartic acid(NMDA)-and Non NMDA-Receptor Agonists on Serotonin Release from Cultured Neurons of Fetal Rat Brainstem (뇌간 신경세포 배양에서 세로토닌 분비에 대한 N-methyl-D-aspartic Acid(NMDA) 및 Non-NMDA 수용체 효현제들의 작용)

  • Yoo, Soon-Mi;Kim, Yul-A;Song, Dong-Keun;Suh, Hong-Won;Kim, Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.141-144
    • /
    • 1995
  • Serotonergic neurons in brainstem play important roles in the endogenous descending pain inhibitory system. To illucidate the involvement of glutamate receptors in the regulation of brainstem serotonergic neurons, we studied the effects of glutamate receptor agonists on 5-hydroxytryptamine(5-HT) release from cultured neurons of rat fetal (gestational age 14th day) brainstem. Cultured cells maintained for 10 days in vitro were stimulated for 30 minutes with agonists of glutamate receptor subtypes at 10-1,000 micromolar concentration. Glutamate (10-1,000 M) increased 5-HT release in a concentration-dependent manner. N-methyl-D-aspartic acid $(NMDA)(10-1,000\;{\mu}M)$ increased 5-HT release in a concentration-dependent manner. Non-NMDA receptor agonists, kainate and $AMPA(3-1,000\;{\mu}M)$ also concentration-dependently increased 5-HT release. These results suggest that both NMDA and non-NMDA receptors regulate 5-HT release from brainstem serotonergic neurons.

  • PDF

The Effect of Topiramate on Hippocampal Neuronal Death and Expression of Glutamate Receptor in Kainate-induced Status Epilepticus Model (Kainate 유발 간질중첩증 모델에서 topiramate가 해마 신경세포사와 glutamate 수용체 발현에 미치는 영향)

  • Park Min-Jeong;Ha Se-Un;Bae Hae-Rahn;Kim Sang-Ho
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.505-512
    • /
    • 2005
  • Excitotoxicity and epileptogenesis have often been associated with glutamate receptor activation. Accumulating evidences indicates that topiramate (TPM), an antiepileptic drug with multiple mechanisms of action has neuroprotective activity. We explored the neuroprotective effect of TPM on the status epilepticus (SE)-induced hippocampal neuronal death. After development of SE by kainite injection (15 mg/Kg), rats were treated with TPM (10mg/kg) for 1 week. The neuronal death was detected by Apop tag in situ detection kit, and the expression levels of glutamate receptors were semi-quantitatively analyzed by immunoblot. Kainate-induced SE caused a significant neuronal death and cell loss in CAI and CA3 regions of hippocampus at 1 week. However, treatment of TPM for 1 week after SE markedly reduced hippocampal neuronal death. The expression of N-methyl-D-aspartate (NMDA) receptor subunit 1, was increased by SE, but was not affected by 1 week treatment of TPM. The expressions of NMDA receptor subunit 2a and 2b were not changed by either SE or TPM. As for ${\alpha}-amino-3-hydroxy-5-methyl-4-isoxazole-propionate$ (AMPA) glutamate receptors (GluR), kainate-induced SE markedly up-regulated GluR1 expression but down-regulated GluR2 expression, leading to increased formation of $Ca^{2+}$ permeable GluR2- lacking AMPA receptors. TPM administration for 1 week attenuated SE-induced expression of both the up-regulation of GluR1 and down-regulation of GluR2, reversing the ratio of GluR1/GluR2 to the control value. In conclusion, TPM protects neuronal cell death against glutamate induced excitotoxicity in kainate-induced SE model, supporting the potential of TPM as a neuroprotective agent.

Activation of the M1 Muscarinic Acetylcholine Receptor Induces GluA2 Internalization in the Hippocampus (쥐 해마에서 M1 무스카린 아세틸콜린 수용체의 활성에 의한 GluA2 세포내이입 연구)

  • Ryu, Keun Oh;Seok, Heon
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1103-1109
    • /
    • 2015
  • Cholinergic innervation of the hippocampus is known to be correlated with learning and memory. The cholinergic agonist carbachol (CCh) modulate synaptic plasticity and produced long-term synaptic depression (LTD) in the hippocampus. However, the exact mechanisms by which the cholinergic system modifies synaptic functions in the hippocampus have yet to be determined. This study introduces an acetylcholine receptor-mediated LTD that requires internalization of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors on the postsynaptic surface and their intracellular mechanism in the hippocampus. In the present study, we showed that the application of the cholinergic agonist CCh reduced the surface expression of GluA2 on synapses and that this reduction was prevented by the M1 muscarinic acetylcholine receptor antagonist pirenzepine in primary hippocampal neurons. The interaction between GluA2 and the glutamate receptor-interacting protein 1 (GRIP1) was disrupted in a hippocampal slice from a rat upon CCh simulation. Under the same conditions, the binding of GluA2 to adaptin-α, a protein involved in clathrin-mediated endocytosis, was enhanced. The current data suggest that the activation of LTD, mediated by the acetylcholine receptor, requires the internalization of the GluA2 subunits of AMPA receptors and that this may be controlled by the disruption of GRIP1 in the PDZ ligand domain of GluA2. Therefore, we can hypothesize that one mechanism underlying the LTD mediated by the M1 mAChR is the internalization of the GluA2 AMPAR subunits from the plasma membrane in the hippocampal cholinergic system.

Glutamate Receptor-interacting Protein 1 Protein Binds to the Armadillo Family Protein p0071/plakophilin-4 in Brain (Glutamate receptor-interacting protein 1 단백질과 armadillo family 단백질 p0071/plakophilin-4와의 결합)

  • Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1055-1061
    • /
    • 2009
  • ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors are widespread throughout the central nervous system and appear to serve as synaptic receptors for fast excitatory synaptic transmission mediated by glutamate. Their modulation is believed to affect learning and memory. To identify the interaction proteins for the AMPA receptor subunit glutamate receptor-interacting protein 1 (GRIPl), GRIP1 interactions with armadillo family protein p0071/plakophilin-4 were investigated. GRIP1 protein bound to the tail region of p0071/plakophilin-4 but not to other armadillo family protein members in a yeast two-hybrid assay. The "S-X-V" motif at the carboxyl (C)-terminal end of p0071/plakophilin-4 is essential for interaction with GRIP1. p0071/plakophilin-4 interacted with the Postsynaptic density-95/Discs large/Zona occludens-1 (PDZ) domains of GRIPI in the yeast two-hybrid assay, as is indicated also by Glutathione S-transferase (GST) pull-down, and co-immunoprecipitated with GRIP1 antibody in brain fraction. The findings of this study provide evidence that p0071/plakophilin-4 is an interactor of GRIP1.

Effect of Antioxidant and Ampa/kainate Receptor Antagonist on Cerebral Neurons Damaged by Ischemia (허혈이 유도된 대뇌신경세포에 대한 항산화제 및 Ampa/kainate 수용체 길항제의 영향)

  • Oh, Yeon-Kyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.1022-1026
    • /
    • 2005
  • To clarify the toxic effect on cultured neonatal mouse cerebral neurons damaged by ischemia, we examined the cytotoxicity induced by ischemia and the protective effect of antioxidant and AMPA/kainate receptor antagonist against ischemia-induced cytotoxicity on cultured cerebral neurons. For this study, mice were administrated with 20ug/kg cyclothiazide or 50U/kg vitamin E via intraperitoneal injection for 2 hours before ischemic induction. After cell culture for 7 days, cell viability, amount of neurofilament and protein kinase C activity were examined. Ischemia decreased significantly cell viability, amount of neurofilament and the increase of protein kinase C activity in these cultures. In the protective effect, vitamin I showed remarkably the increase of cell viability and amount of neurofilament, and the decrease of protein kinase C activity but, cyclothiazide did not showed any protective effect on ischemia-induced cytotoxicity. From these results, it is suggested that vitamin I is effective in blocking the neurotoxicity induced by ischemia, but cyclothiazide as a AMPA/kainate receptor antagonist is not.

Effects of Systemic and Intrathecal AMPA/KA Receptor Antagonist LY293558 in a Rat Model for Postoperative Pain (절개통증모델에서 복강 및 척수강내로 투여된 AMPA/KA 수용체 길항제 LY293558의 효과)

  • Lee, Hae-Jin
    • The Korean Journal of Pain
    • /
    • v.13 no.1
    • /
    • pp.8-18
    • /
    • 2000
  • Background: Intraperitoneal (IP) and intrathecal (IT) administration of $\alpha$-amino-3-hydroxy-5-methyl-4-isoxazole-propionic (AMPA) and kainate (KA) receptor antagonist attenuate hyperalgesia in various models of persistent pain. The purpose of this study was to assess the effects of IP and IT LY293558, a novel AMPA/KA receptor antagonist on mechanical hyperalgesia after incision. Methods: Sprague-Dawley rats were anesthetized with halothane and underwent plantar incision. Two hours later, responses to mechanical stimuli were assessed using the response frequency to a nonpunctate mechanical stimulus and withdrawal threshold to calibrated von Frey filaments. One group of rats received vehicle, 5 or 10 mg/kg of LY293558 IP. In the other group, vehicle, 0.2, 0.5 or 2 nmol of LY293558 was administered IT. Ataxia and motor function were also evaluated. Results: Hyperalgesia was persistent in both the vehicle and 5 mg/kg group. IP administration of 10 mg/kg of LY293558 increased withdrawal threshold at 30 and 60 min after incision; deficits in rotorod performance were observed at 30, 60, 90 and 150 min. IT administration of 0.5 nmol of LY293558 increased the median withdrawal threshold at 30 and 60 min. Motor function was only impaired at 30 min. IT administration of 2 nmol produced hemiparesis. Again, inhibition of pain behaviors outlasted the effects on motor function. Conclusions: These data further suggest AMPA/KA receptors are important for the maintenance of pain behaviors caused by incisions. IT administration of LY293558 was more effective than systemic administration and reducing pain behaviors caused by a surgical incision.

  • PDF

The Effect of Intrathecal ACEA 2085, Highly Selective AMPA Receptor Antagonist on the Hyperalgesia Observed after Thermal Injury in the Rat (흰쥐에서 척수강내로 투여한 AMPA 수용체 길항제, ACEA 2085의 항통각과민 효과)

  • Jun, Jong-Hun;Yeom, Jong-Hoon;Kim, Yong-Chul;Shim, Jae-Chul;Kim, Kyoung-Hun;Suh, Jung-Kook;Yoo, Hee-Koo
    • The Korean Journal of Pain
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Background: To study the role of spinal alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in pain behaviors caused by mild burn, we examined the effect of intrathecal administered ACEA 2085, which has been recently characterized as a high potency competitive AMPA receptor antagonist, on the thermal hyperalgesia state induced by mild burn. Methods: A thermal injury was induced by applying the left hind paw to a thermal surface ($52.5^{\circ}C$) for 45 sec. Thermal escape latency of the hind paw was determined using an underglass thermal stimulus. Thirty min after thermal injury, the paw withdrawal latency (PWL) in injured paw of all groups fell from 10~12 sec to 5~7 sec. At that time, ACEA 2085 (0.01~0.1 mcg) and 6-cyano-7-nitroquinoxalinedione (CNQX, 1~30 mcg) were injected through intrathecal heters in rats with mild burn injury on the right hindpaw. And then, PWL were measured in the both hindpaw every 30 minutes for about three hours. Results: The intrathecal injection of ACEA 2085 produced a dose dependent reversal of the hyperalgesia in the right hindpaw and more potent than CNQX, but had no effect upon the response latency of the normal left hind paw even at the largest doses. All effects were observed at doses that had no significant effect upon motor function. Conclusions: Intrathecal ACEA 2085, highly selective AMPA receptor antagonist produce a dose- dependent reversal of the thermal hyperalgesia evoked mild burn injury. These results suggested that spinal AMPA receptor play an important role in the hyperalgesia induced by mild burn injury.

  • PDF

Effect of Oxidative Stress and Glutamate Receptor Antagonist on Cultured Rat Osteoblast and Osteoclast (백서의 배양 골아세포와 파골세포에 대한 산화적 손상과 Glutamate 수용체 길항제의 영향)

  • Park Seung Taeck;Jeon Seung Ho;Lee Byung Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.996-1001
    • /
    • 2003
  • It is well known that oxidative stress of reactive oxygen species(ROS) may be a causative factor in the pathogenesis of bone disorder. The purpose of this study was to evaluate the cytotoxicity of oxidative stress. Cell viability by MTS assay or INT assay, activity of glutathione peroxidase(GPx), lipid peroxidation(LPO) activity and cell viablity. And also protctive effect of glutamate receptors against ROS-induced osteotoxicity was examined by protein synthesis, alkaline phosphatase (ALP) activity and lactate dehydrogenase (LDH) activity in cultured rat osteoblasts and osteoclasts. XO/HX decreased cell viability and GPx activity, protein synthesis and ALP activity, but increased LPO activity and LDH activity. In the protective effect, N-methyl-D-aspartate (NMDA) receptor antagonists or AMPA/kainate receptor antagonists such as D-2-amino-5-phosphonovaleric acid (APV), 7-chlorokynurenic acid (CKA), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX), NMDA receptor antagonists but AMPA/kainate receptor antagonists showed protective effect on xanthine oxidase (XO) and hypoxanthine (HX) in these cultures by the increse of protein synthesis, ALP activity.