• 제목/요약/키워드: AMPA

검색결과 72건 처리시간 0.025초

Effect of Electroacupuncture on AMPA Receptor GluR2 Subunit in Complete Freund's Adjuvant-induced Inflammatory Pain Model

  • Kim, Chul-Yun;Choi, Hye-Young;Yang, Yeun-Jin;Choi, Byung-Tae
    • 동의생리병리학회지
    • /
    • 제25권5호
    • /
    • pp.881-886
    • /
    • 2011
  • AMPA receptor (AMPAR)s are heterotetrameric structures made up from 4 units (GluR1-4) and are thought to underlie perception of persistent inflammatory pain. Complete Freund's adjuvant (CFA)-evoked inflammation induces synaptic GluR2 internalization, which is initiated by GluR2 phosphorylation, in dorsal horn neurons during the maintenance of CFA-induced hypersensitivity. The present study investigated whether electroacupuncture (EA) stimulation has any effect on GluR2 trafficking by using immunoblot and immunohistochemistry. We examined that CFA-induced dorsal horn GluR2 internalization was attenuated by EA treatment. EA treatment could also decrease the level of pGluR2 regardless of whether CFA injection was administrated or not. In addition, previous studies suggest that microglial cells are increased without morphological change in CFA injected animal. In our study, increases in microglial cells in CFA group were observed, whereas EA with or without CFA-injected group showed similar aspects with normal group. In conclusion, our results indicate that EA might blunt CFA-evoked inflammation by coordinating mechanisms at the upstream step of neuron activation and GluR2 phosphorylation.

Mechanism of Glutamate-induced $[Ca^{2+}]i$ Increase in Substantia Gelatinosa Neurons of Juvenile Rats

  • Jung, Sung-Jun;Choi, Jeong-Sook;Kwak, Ji-Yeon;Kim, Jun;Kim, Jong-Whan;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.53-57
    • /
    • 2003
  • The glutamate receptors (GluRs) are key receptors for modulatory synaptic events in the central nervous system. It has been reported that glutamate increases the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) and induces cytotoxicity. In the present study, we investigated whether the glutamate-induced $[Ca^{2+}]_i$ increase was associated with the activation of ionotropic (iGluR) and metabotropic GluRs (mGluR) in substantia gelatinosa neurons, using spinal cord slice of juvenile rats (10${\sim}21 day). $[Ca^{2+}]_i$ was measured using conventional imaging techniques, which was combined with whole-cell patch clamp recording by incorporating fura-2 in the patch pipette. At physiological concentration of extracellular $Ca^{2+}$, the inward current and $[Ca^{2+}]_i$ increase were induced by membrane depolarization and application of glutamate. Dose-response relationship with glutamate was observed in both $Ca^{2+}$ signal and inward current. The glutamate-induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV was blocked by CNQX, an AMPA receptor blocker, but not by AP-5, a NMDA receptor blocker. The glutamate-induced $[Ca^{2+}]_i$ increase in $Ca^{2+}$ free condition was not affected by iGluR blockers. A selective mGluR (group I) agonist, RS-3,5-dihydroxyphenylglycine (DHPG), induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV in SG neurons. These findings suggest that the glutamate-induced $[Ca^{2+}]_i$ increase is associated with AMPA-sensitive iGluR and group I mGluR in SG neurons of rats.

쥐 해마에서 M1 무스카린 아세틸콜린 수용체의 활성에 의한 GluA2 세포내이입 연구 (Activation of the M1 Muscarinic Acetylcholine Receptor Induces GluA2 Internalization in the Hippocampus)

  • 류근오;석헌
    • 생명과학회지
    • /
    • 제25권10호
    • /
    • pp.1103-1109
    • /
    • 2015
  • 뇌 해마의 콜린성 신경분포는 학습과 기역에 연관성이 있는 것으로 알려져 있으며 이의 작용제인 carbachol 투여 시 장기기억 저하가 유도됨이 알려져 왔다. 그러나 이러한 콜린성 자극에 의한 해마 신경세포의 시냅스 내 변화기작은 완전히 알려지지 않고 있다. 본 연구에서는 아세틸콜린 수용체의 활성에 의하여 유도되는 장기기억 저하 현상에 있어 alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) 수용체가 후시냅스 표면으로부터 사라지는 현상과 이의 조절기작에 대하여 알아보고자 한다. 이를 위하여 쥐 해마의 일차세포를 추출하고 체외에서 배양한 성숙 신경세포에 carbachol 을 투여하여 장기기억 저하를 유도 하였으며, 후시냅스의 표면으로부 터 AMPA 수용체의 아단위체인 GluA2가 M1 무스카린 수용체의 길항제에 의하여 저해 되었다. 또한 콜린성 자극 에 의한 GluA2의 내재화 현상의 작용기작 연구를 위하여 쥐 해마 절편에 carbachol 투여 후 GluA2와 직접적인 상호작용을 하는 Glutam내재화 되었음을 확인하였다. 이러한 현상은 ate receptor-interacting protein 1 (GRIP1) 과 clathrine 단백질이 매개하는 세포내이입 작용을 하는 adaptin-α 단백질의 결합 변화를 관찰하였다. GluA2는 carbachol 자극에 의해 세포내이입 과정에서 adaptin-α 와의 결합이 증가하였으며 반대로 GRIP1과는 해리되었다. 이는 아세틸콜린의 수용체의 자극에 의하여 GluA2의 내제화 작용이 수반되며, 이의 작용기작으로 GluA2의 후시 냅스 표면 발현시에 결합하고 있는 GRIP1과 해리 되면서 장기기억 저하 현상이 유도됨을 의미한다.

Kainate 유발 간질중첩증 모델에서 topiramate가 해마 신경세포사와 glutamate 수용체 발현에 미치는 영향 (The Effect of Topiramate on Hippocampal Neuronal Death and Expression of Glutamate Receptor in Kainate-induced Status Epilepticus Model)

  • 박민정;하세운;배혜란;김상호
    • 생명과학회지
    • /
    • 제15권3호
    • /
    • pp.505-512
    • /
    • 2005
  • 신경흥분독성과 간질발작발현은 glutamate 수용체활성과 연관이 있다고 알려져 있다. a-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), kainate 수용체에 대한 glutamate 활성을 포함하는 다양한 기전을 가진 항전간제인 Topiramate는 신경보호작용을 가진다는 증거가 제시되어 Topiramate가 간질발작 후 해마의 glutamate 수용체 발현에 미치는 효과를 관찰하였다. 흰쥐에 kainate를 복강 내 주사하여 간질중첩증을 유발시킨 후 Topiramate를 1주일 주사하였다 Apop tag in situ detection kit를 이용하여 세포손상을 관찰한 결과 kainate 유발 간질중첩증 1주일 후 해마의 CA1, CA3에서 심각한 세포사를 보였으나, Topiramte 처리 군에서는 세포사가 현저히 감소하였다. 간질중첩증 이후 NMDA 수용체 아형 1,2a, 2b 발현이 현저히 증가했으나 Topiramate 처치에 의해 NMDA수용체의 발현에는 뚜렷한 변화가 없었다. AMPA수용체에서는 GluR1이 간질중첩증 이후 현저히 상향 조정되었고 GluR2는 현저히 하향조정 되었다 Topiramate 1주일 처리 시 간질중첩증으로 인해 변화된 CluR1과 GluR2의 발현이 역전되었다. 결론적으로 Topiramate는 간질중침증에 의한 CluR1/CluR2 발현비의 증가로 유발되는 흥분성 신경세포사를 억제시킴으로써 신경보호작용이 있는 것으로 보인다.

Neuroprotective Effects of Methanol Extract of Sophorae Subprostratae Radix on Glutamate Excitotoxicity in PC12 Cells and Organotypic Hippocampal Slice Cultures

  • Kim, Soo-Man;Shim, Eun-Sheb;Kim, Bum-Hoi;Sohn, Young-Joo;Kim, Sung-Hoon;Jung, Hyuk-Sang;Sohn, Nak-Won
    • 대한한의학회지
    • /
    • 제29권5호
    • /
    • pp.29-40
    • /
    • 2008
  • Objectives : It has been reported that Sophorae Subprostratae Radix (SSR) has a neuroprotective effect on cerebral ischemia in animals. In the present study, the authors investigated the neuroprotective effect of SSR on glutamate excitotoxicity. Glutamate excitotoxicity was induced by using NMDA, AMPA, and KA in PC12 cells and in organotypic hippocampal slice cultures. Methods :Methanolic extract of SSR was added at 0.5, 5, and 50 ${\mu}$g/ml to culture media for 24 hours. The effects of SSR were evaluated by measuring of cell viability, PI-stained neuronal cell death, TUNEL-positive cells, and MAP-2 immunoreactivity. Results : SSR increased PC12 cell viabilities significantly against AMPA-induced excitotoxicity, but not against NMDA-induced or KA-induced excitotoxicity. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in the CA1, CA3, and DG hippocampal regions and reduced TUNEL-positive cells significantly in CA1 and DG regions. In organotypic hippocampal slice cultures damaged by AMPA-induced excitotoxicity, SSR attenuated neuronal cell death and reduced TUNEL-positive cell numbers significantly in the CA1 and DG regions. In organotypic hippocampal slice cultures damaged by KA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in CA3, but did not reduce TUNEL-positive cell numbers in CA1, CA3 or DG. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated pyramidal neuron neurite retraction and degeneration in CA1. Conclusions : These results suggest that the neuroprotective effects of SSR are related to antagonistic effects on the NMDA and AMPA receptors of neuronal cells damaged by excitotoxicity and ischemia.

  • PDF

뇌간 신경세포 배양에서 세로토닌 분비에 대한 N-methyl-D-aspartic Acid(NMDA) 및 Non-NMDA 수용체 효현제들의 작용 (Effect of N-methyl-D-aspartic acid(NMDA)-and Non NMDA-Receptor Agonists on Serotonin Release from Cultured Neurons of Fetal Rat Brainstem)

  • 유순미;김율아;송동근;서홍원;김영희
    • 대한약리학회지
    • /
    • 제31권2호
    • /
    • pp.141-144
    • /
    • 1995
  • 뇌간의 세로트닌 신경계는 내재성 하행성 동통억제계(endogenous descending pain inhibitory system)에 있어서 중추적인 역할을 하고 있다. 뇌간의 세로토닌 신경세포에 대한 glutamate 수용체 중 N-methyl-D-aspartic acid-(NMDA-) 및 non-NMDA 수용체 효현제들의 작용을 알아보기 위하여, 쥐의 태자(태생 14일)로부터 뇌간을 분리하여 10일 동안 배양한 후 5-hydroxytryptamine(5-HT)의 분비에 대한 각 glutamate 수용체 효현제들이 영향을 연구하였다. Glutamate를 $10\;{\mu}M$에서 $1000\;{\mu}M$까지 농도를 변화하여 30분 동안 배지에 가한 후, 배지내에 분비되는 세로토닌을 측정한 결과, 농도 의존적으로 세로토닌의 분비가 증가되었다. Glutamate 수용체 중에서 NMDA 수용체 효현제인 NMDA를 $10\;{\mu}M$에서 $1000\;{\mu}M$까지 농도를 변화하여 30분 동안 배지에 가한 후, 배지내에 분비되는 세로토닌을 측정한 결과, 농도 의존적으로 세로토닌의 분비가 증가되었다. Non-NMDA 수용체 효현제인 kainate 및 AMPA를 $3\;{\mu}M$에서 $300\;{\mu}M$까지 농도를 변화하여 배지에 처리한 결과, 각 효현제에 의해 농도 의존적으로 세로토닌의 분비가 증가됨을 관찰하였다. 이상의 연구결과, 쥐의 태자(태생 14일)로부터 분리하여 10일동안 배양한 뇌간의 세로토닌 신경세포에 있어서 glutamate, NMDA, kainate 및 AMPA 모두 5-HT의 분비를 자극함으로써, NMDA- 및 non-NMDA 수용체 모두 5-HT의 분비에 관여하고 있음을 나타낸다.

  • PDF

Correlation between mEPSC Amplitude and Rise Time upon the Blockade of AMPA Receptor Desensitization at Hippocampal Synapses

  • Jung, Su-Hyun;Choi, Suk-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권2호
    • /
    • pp.81-85
    • /
    • 2002
  • Conventional views of synaptic transmission generally overlook the possibility of 'postfusional-control' the regulation of the speed or completeness of transmitter release upon vesicular fusion. However, such regulation often occurs in non-neuronal cells where the dynamics of fusion-pore opening is critical for the speed of transmitter release. In case of synapses, the slower the transmitter release, the smaller the size and rate-of-rise of postsynaptic responses would be expected if postsynaptic neurotransmitter receptors were not saturated. This prediction was tested at hippocampal synapses where postsynaptic AMPA-type glutamate receptors (AMPAR) were not generally saturated. Here, we found that the small miniature excitatory postsynaptic currents (mEPSCs) showed significantly slower rise times than the large mEPSCs when the sucrose-induced mEPSCs recorded in cyclothiazide (CTZ), a blocker for AMPAR desensitization, were sorted by size. The slow rise time of the small mEPSCs might result from slow release through a non-expanding fusion pore, consistent with postfusional control of neurotransmitter release at central synapses.

Removal of Herbicide Glyphosate in a Drinking Water Treatment System

  • Navee, Angsuputiphant;Kim, Jang-Eok
    • 한국환경농학회지
    • /
    • 제28권2호
    • /
    • pp.186-193
    • /
    • 2009
  • The removal efficiency of herbicide glyphosate in a drinking water treatment system was investigated. Four major processes of a drinking water treatment system were selected and experiments were performed separately including; treatments by sodium hypochlorite (NaOCl), a sedimentation process by PAC (polyaluminum chloride), ozonation and a GAC (granular activated carbon) treatment. In the sodium hypochlorite experiment, about 50% of the glyphosate was removed by 2 mg/L of hypochlorite and more than 90% was eliminated when 5 mg/L of NaOCl was applied. Also, AMPA, the main metabolite of glyphosate, was treated with hypochlorite. More than 30% of the AMPA was removed by 2 mg/L of hypochlorite and 50% by 5 mg/L. In the PAC experiment, it was determined that more than 60% could be removed. Further experiments were performed and the results indicated that the removed amount was dependent upon the amount of soil and upon the properties of the soil especially that of clay minerals. Ozonation could oxidize glyphosate to its byproducts at about a level of 50%. In contrast, when 1 mg/L of glyphosate was treated with GAC, the amount removed was negligible. The results of this experiment were conclusive. We confirmed that drinking water, which has been contaminated with water polluted with glyphosate can be effectively purified by the application of the drinking water treatment processes currently used.

백서의 배양 골아세포와 파골세포에 대한 산화적 손상과 Glutamate 수용체 길항제의 영향 (Effect of Oxidative Stress and Glutamate Receptor Antagonist on Cultured Rat Osteoblast and Osteoclast)

  • 박승택;전승호;이병찬
    • 동의생리병리학회지
    • /
    • 제17권4호
    • /
    • pp.996-1001
    • /
    • 2003
  • It is well known that oxidative stress of reactive oxygen species(ROS) may be a causative factor in the pathogenesis of bone disorder. The purpose of this study was to evaluate the cytotoxicity of oxidative stress. Cell viability by MTS assay or INT assay, activity of glutathione peroxidase(GPx), lipid peroxidation(LPO) activity and cell viablity. And also protctive effect of glutamate receptors against ROS-induced osteotoxicity was examined by protein synthesis, alkaline phosphatase (ALP) activity and lactate dehydrogenase (LDH) activity in cultured rat osteoblasts and osteoclasts. XO/HX decreased cell viability and GPx activity, protein synthesis and ALP activity, but increased LPO activity and LDH activity. In the protective effect, N-methyl-D-aspartate (NMDA) receptor antagonists or AMPA/kainate receptor antagonists such as D-2-amino-5-phosphonovaleric acid (APV), 7-chlorokynurenic acid (CKA), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX), NMDA receptor antagonists but AMPA/kainate receptor antagonists showed protective effect on xanthine oxidase (XO) and hypoxanthine (HX) in these cultures by the increse of protein synthesis, ALP activity.