• Title/Summary/Keyword: AMP

Search Result 1,924, Processing Time 0.025 seconds

Cognitive Improvement Effects of Krill Oil in a Scopolamine-induced Mice Model (Scopolamine 유도 인지 저하 마우스 모델에서 크릴 오일의 인지 개선 효과)

  • Hye-Min Seol;Jeong-Ah Lee;Mi-Sun Hwang;Sang-Hoon Park;Hyeong-Soo Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.509-519
    • /
    • 2024
  • A previous study showed that krill oil improved recognition and memory through anti-oxidative effects in an amyloid β model, but the authors noted that further investigations are necessary of alterations to neurotransmitters' states and of serum lipid profile improvements related to serum lipid peroxidation. Accordingly, in this study, ICR mice were pre-treated intraperitoneally with scopolamine prior to induced neurotransmission impairment, and the effects of krill oil provision on their capabilities of cognition were tested by performing a passive avoidance test (PAT), water maze test (WMT), and novel object recognition test. Then, parameters including the acetylcholine (ACh) concentration, acetylcholinesterase activity (AChE), lipid peroxidation, serum lipid levels, and nerve cell proliferation were investigated. The results showed that krill oil improved the mice's abilities in recognition and memory as the times taken to complete the PAT and WMT were reduced compared to the mice in a comparison scopolamine-treated group. Krill oil produced an increased concentration of Ach, and this was accompanied by a decrease in AChE. As shown in a scopolamine-treated SH-SY5Y cell line, krill oil reduced the activity of AChE. Moreover, the suppression of lipid peroxidation-reflected in the finding that malondialdehyde was decreased with krill oil provision-is speculated to affect the recorded serum triglyceride and cholesterol decreases and LDL cholesterol increase. The intake of krill oil was also found to produce an improvement in brain-derived neurotrophic factor expression by stimulating the activation of cyclic AMP response element binding protein in the brain tissue. Overall, the current results imply that the provision of krill oil raises the cognition and memory by elevating neurotransmitters and by improving the serum lipid profile and nerve cell proliferation, which occur as lipid peroxidation is suppressed in the brain tissue.

Effects of Taeumin, Soeumin and Soyangin Prescriptions on the Adipocyte Induced by Gold Thioglucose in the Rat (태(太)·소음인(少陰人), 소양인(少陽人)의 처방(處方)이 Gold thioglucose로 유발(誘發)된 백서(白鼠)의 비만병(肥滿病)에 미치는 효과(效果))

  • Kim, Kyung-Yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.8 no.1
    • /
    • pp.295-317
    • /
    • 1996
  • It is researched to elucidate the effects of Taeumjowuitang(TE,太陰調胃湯), Sibimikwanjungtang(SE, 十二味寬中湯) and Yangkeogsanwhatang(SY,凉膈散火湯) on the obesity induced by gold thioglucose and the differentiation and growth of preadipocyte 3T3-L1 in the mouse. The result were as follows: 1. TE,SE and SY extracts improved the blood level of transaminase in the obese mouse induced by gold thioglucose. 2. TE,SE and SY extracts inhibited the increase of liver fat and body fat in the obese mouse induced by gold thioglucose. 3. TE,SE and SY extracts inhibited the increase of body weight in the obese mouse induced by gold thioglucose. 4. TE,SE and SY extracts inhibited the growth of undifferentiate preadipocyte 3T3-L1. 5. TE,SE and SY extracts showed inhibitory effect on the differentiation of preadipocyte 3T3-L1. The above results suggest that the TE,SE and SY extracts may be used on the obesity induced by the overgrowth and differentiation of adipocyte, and the accumulation of fat in liver and body.

  • PDF

The effects of proliferation and differentiation on adipocyte 3T3-L1 by prescriptions and herbs of Taeyang-In and Taeum-In (태양인(太陽人), 태음인(太陰人)의 처방(處方)과 약재(藥材)가 지방세포(脂肪細胞)(3T3-L1)의 증식(增殖)·분화억제(分化抑制)에 미치는 영향(影響))

  • Kim, Su-beom;Kho, Byung-hee;Song, Il-byung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.10 no.2
    • /
    • pp.533-564
    • /
    • 1998
  • In order to know the effect of proliferation and differentiation on edipocyte 3T3-L1 by prescriptions and herbs, Taeyangin(太陽人)'s Okapijangcheok-tang(五加皮壯脊湯) Mihudeungsikjangtang Acanthopanacis Cortex(五加皮) Phragmitis Rhizoma(蘆根) and Taeumin(太陰人)'s Taeumjowi-tang(太陰調胃湯) Cheongsimyonja-tang(淸心蓮子湯) Cheongpaesagan-tang(淸肺瀉肝湯) Galkeunbupyong-tang(葛根浮萍湯) Coicis Semen(薏苡仁) Rhei Undulati Rhizoma(大黃) Mori Cortex(桑白皮) Ulmi Cortex(楡根白皮) Holotrichia Vermiculus Kalopanaxii Cortex(海桐皮) Ephedrae Herba(麻黃) Imperatae Rhizoma(白茅根), were used and had some effects. 1. The proliferation effect of edipocyte 1) At the Taeyangin(太陽人)'s prescriptions and herbs, Okapijangcheok-tang(五加皮壯脊湯) Mihudeungsikjang-tang Acanthopanacis Cortex(五加皮) have a control effect at the boiling water-extract and ethyl alcohol-extract. Phragmitis Rhizoma(蘆根) have a control effect at the ethyl alcohol-extract. 2) At the Taeyangin(太陽人)'s prescriptions and herbs, Taeumjowi-tang(太陰調胃湯) Cheongsimyonja-tang(淸心蓮子湯) Cheongpaesagan-tang(淸肺瀉肝湯) Galkeunbupyong-tang(葛根浮萍湯) have a control effect at the boiling water-extract and ethyl alcohol-extract. Coicis Semen(薏苡仁) Rhei Undulati Rhizoma(大黃) Morl Cortex(桑白皮) Ulmi Cortex(楡根白皮) Kalopanaxii Cortex(海桐皮) · Ephedrae Herba(麻黃) of the boiling water-extract, Holotrichia Vermiculus Kalopanaxii Cortex(海桐皮) of ethyl alcohol-extract have a control effect on edipocytes. Rhei Undulati Rhizoma(大黃) Ulmi Cortex(楡根白皮) Ephedrae Herba(麻黃) of high-density have a cyto-toxicity. 2. The differentiation effect of edipocyte 1) At the Taeyangin(太陽人)'s prescriptions and herbs during the natural differentiation, Phragmitis Rhizoma(蘆根) of the boiling water-extract, Okapijangchek-tang(五加皮壯脊湯) Acanthopanacis Cortex(五加皮) of the ethyl alcohol-extract have a cyto-toxicity on the first-differentiation. 2) At the Taeumin(太陰人)'s prescriptions and herbs during the natural differentiation, Ulmi Cortex (楡根白皮) Kalopanaxii Cortex(海桐皮) of the boiling water-extract have a cyto-toxicity on the first-differentiation. Cheongsimyonja-tang(淸心蓮子湯) Ephedrae Herba(麻黃) of ethyl alcohol-extract have a control effect on the redifferentiation. 3) At the Taeyangin(太陽人)'s prescriptions and herbs on the first-differentiation during the induced differentiation, Acanthopanacis Cortex(五加皮) of ethyl alcohol-extract has a control effect. Okapijangchek-tang(五加皮壯脊湯) Acanthopanacis Cortex(五加皮) Phragmitis Rhizoma(蘆根) of the boiling water-extract have a cyto-toxicity. 4) At the Taeumin(太陰人)'s prescriptions and herbs on the first-differentiation during the induced differentiation, Coicis Semen(薏苡仁) Ephedrae Herba(麻黃) Imperatae Rhizoma(白茅根) of the boiling water-extract and Ephedrae Herba(麻黃) of the ethyl alcohol-extract have a control effect. Kalopanaxii Cortex(海桐皮) of the boiling water-extract and the ethyl alcohol-extract has a cyto-toxicity. Considering this result, the Taeyangin(太陽人) Taeumin(太陰人)'s prescriptions and herbs have a control effect on edipocytes during the proliferation. Acanthopanacis Cortex(五加皮), Coicis Semen(薏苡仁) Ephedrae Herba(麻黃) Imperatae Rhizoma(白茅根) have a control effect on edipocytes during the induced differentiation. In the future, for treating a obesity need a vivo assay and hope this study to help to know the mechanisms of obesity.

  • PDF

Microbiological and Enzymological Studies on the Flavor Components of Sea Food Pickles (젓갈등속(等屬)의 정미성분(呈味成分)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.1-27
    • /
    • 1969
  • More than thirty kinds of sea food pickles have been eaten in Korea. Out of these salted yellow tail pickle, salted clam pickle, salted oyster pickle, and salted cuttlefish pickle were employed for the analysis of their components, identification of main fermenting microbes, and determination of enzyme characteristics concerned. Also studied was the effect of enzymic action of microbes, which are concerned with the fermenting of pickles, on the production of flavorous 5'-mononucleotides and amino acids. The results are summarized as follows: 1. Microflora observed in the pickles are: (a) Total count of viable cells after 1-2 months of pickling was found to be $10^7$ and that after 6 months decreased to $10^4$. (b) Microbial occurence in the early stage of pickling was observed to be 10-20% Micrococcus spp., 10-20% Brevibacterium spp., 0-30% Sarcina spp., 20-30% Leuconostoc spp., ca 30% Bacillus spp., 0-10% Pseudomonas spp., 0-10% Flavobacterium spp., and 0-20% yeast. (c) Following the early stage of pickling, mainly halophilic bacteria such as Bacillus subtilis, Leuconostoc mesenteroides, Pediococcus halophilus and Sarcina litoralis, were found to exhibit an effect on the fermentation of pickle and their enzyme activities were in direct concern in fermentation of pickles. (d) Among the bacteria participating in the fermentation, Sarcina litoralis 8-14 and 8-16 strains were in need of high nutritional requirement and the former was grown only in the presence of purine, pyrimidine and cystine and the latter purine, pyrimidine and glutamic acid. 2. Enzyme characteristics studied in relation to the raw materials and the concerned microbes isolated are as follows: (a) A small amount of protease was found in the raw materials and 30-60% decrease in protease activity was demonstrated at 7% salt concentration. (b) Protease activity of halophilic bacteria, Bacillus subtilis 7-6, 11-1, 3-6 and 9-4 strains, in the complete media decreased by 10-30% at the 7% salt concentration and that of Sarcina litoralis 8-14 and 8-16 strains decreased by 10-20%. (c) Proteins in the raw materials were found to be hydrolyzed to yield free amino acids by protease in the fermenting microbes. (d) No accumulation of flavorous 5'-mononucleotides was demonstrated because RNA-depolymerase in the raw materials and the pickles tended to decompose RNA into nucleoside and phosphoric acid. (e) The enzyme produced in Bacillus subtilis 3-6 strain isolated from the salted clam pickles, was ascertained to be 5'-phosphodiesterase because of its ability to decompose RNA and thus accumulating 5'-mononucleotide. (f) It was demonstrated that the activity of phosphodiesterase in Bacillus subtilis 3-6 strain was enhanced by some components in the corn steep liquor and salted clam pickle. The enzyme activity was found to decrease by 10-30% and 40-60% at the salt concentration of 10% and 20%, respectively. 3. Quantitative data for free amino acids in the pickles are as follows: (a) Amounts of acidic amino acids such as glutamic and aspartic acids in salted clam pickle, were observed to be 2-10 times other pickles and it is considered that the abundance in these amino acids may contribute significantly to the specific flavor of this food. (b) Large amounts of basic amino acids such as arginine and histidine were found to occur in salted yellow tail pickle. (c) It is much interesting that in the salted cuttlefish pickle the contents of sulfur-containing amino acids were exceedingly high compared with those of others: cystine was found to be 17-130 times and methionine, 7-19 times. (d) In the salted oyster pickle a high content of some essential amino acids such as lysine, threonine, isoleucine and leucine, was demonstrated and a specific flavor of the pickle was ascribed to the sweet amino acids. Contents of alanine and glycine in the salted oyster pickle were 4 and 3-14 times as much as those of the others respectively. 4. Analytical data for 5'-mononucleotides in the pickles are as follows: (a) 5'-Adenylic acid and 3'-adenylic acid were found in large amounts in the salted yellow tail pickle and 5'-inosinic acid in lesser amount. (b) 5'-Adenylic acid, especially 3'-adenylic acid predominated in amount in the salted oyster pickle over that in the other pickles. (c) The salted cuttlefish pickle was found to contain only 5'-adenylic acid and 3'-adenylic acid. It has become evident from the above fact that clam and the invertebrate lack of adenylic deaminase and contain high content of adenylic acid. Thus, they were demonstrated to be the AMP-type. (d) 5'-Inosinic acid was contained in the salted yellow tail pickle in a significant concentration, and it might be considered to be IMP-type. 5. Comparative data for flavor with regard to the flavorous amino acids and the contents of 5'-mononucleotides are: (a) A specific flavor of salted yellow tail pickle was ascribed to the abundance in glutamic acid and aspartic acid, and to the existence of a small amount of flavorous 5'-inosinic acid. The combined effect of these components was belived to exhibit a synergistic action in producing a specific fiavor to the pickle. (b) A specific flavor of salted clam pickle has been demonstrated to be attributable to the richness in glutamic acid and aspartic acid rather than to that of 5'-mononucleotides.

  • PDF