• Title/Summary/Keyword: ALE 해석 방법

Search Result 29, Processing Time 0.021 seconds

Three-dimensional finite element analysis of hot square die extrusion by using split ALE method (분할된 ALE 방법에 의한 평금형 열간압출의 3차원 유한요소해석)

  • Kang, Yeon-Sick;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1912-1920
    • /
    • 1997
  • In the analysis of metal forming process, ALE(Arbitrary Lagrangian Eulerian) finite element methods have been increasingly used for the capability to control mesh independently from material flow. The methods can be divided into two groups i.e., coupled and split formulations. In the present work, the split ALE formulation is used for computational efficiency. A split ALE finite element method developed for rigid-viscoplastic materials and applied to the analysis of hot square die extrusion. Since thermal state greatly affects the product quality, an ALE scheme for temperature analysis is also presented. As computational examples, profile shapes as square and cross-like sections are chosen.

Comparative Study on Description Schemes to Perform Finite Element Analysis in Incremental Forming Process (점진성형의 공정평가를 위한 유한요소해석에서 묘사기법 적용에 관한 비교 연구)

  • Park, Jun-Soo;Byon, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1073-1080
    • /
    • 2012
  • Incremental forming is a cold working process in which a small part of the material is being deformed and the area of local deformation is moving over the entire material. In this paper, we study description schemes to perform finite element analysis for the incremental forming. The selected description schemes to examine are the Lagrangian description and the arbitrary Lagrangian-Eulerian (ALE) description. The sliding boundary scheme coupled with ALE is also examined to overcome the distortion problems of elements on the contact surface. Results show that the ALE description with the sliding boundary scheme is most favorable in overcoming the distortion of elements. This description leads to make the simulation continued to the final stage of the incremental forming. On the other hand, the Lagrangian description as well as the original ALE description makes the elements much distorted and the analysis is stopped long before arriving at the final shape of deformation.

Applicability Analysis of the FE Analysis Method Based on the Empirical Equation for Near-field Explosions (근거리 폭발에 대한 경험식 기반 유한요소해석 방법의 적용성 분석)

  • Hyun-Seop, Shin;Sung-Wook, Kim;Jae-Heum, Moon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.333-342
    • /
    • 2022
  • The blast analysis method entails the use of an empirical equation and application of the pressure-time history curve as an explosive load. Although this method is efficient owing to its simple model and short run time, previous studies indicate that it may not be appropriate for near-field explosions. In this study, we investigated why different results were observed for the analysis method by considering an RC beam under near-field explosion conditions with the scaled distance of 0.4-1.0 as an example. On this basis, we examined the application range of the empirical analysis method by using the finite element analysis program LS-DYNA. The results indicate that the empirical analysis method based on data from far-field explosion tests underestimates the impulse. Thus, the calculated deflection of the RC beam would be smaller than the measured deflection and arbitrary Lagrangian-Eulerian (ALE) analysis result. The ALE analysis method is more suitable for near-field explosion conditions wherein the structural responses are large.

ALE based Fluid-Structure-Interaction Simulation of Solid Propellant Rocket (고체 로켓 내부 그레인 유체-구조-연소 통합 해석)

  • Han, Sang-Ho;Choi, Hee-Sung;Min, Dae-Ho;Hwang, Chan-Gyu;Kim, Chong-Am
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.173-176
    • /
    • 2009
  • The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion, which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF

A Study on the Slipping Problem for Cable-Membrane Structures (케이블-막구조물의 요소이동(slip)에 관한 연구)

  • Kim, Jae-Yeol;Kang, Joo-Won;Park, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.95-105
    • /
    • 2008
  • The objective of this study is find out the stressed condition, slipped direction and slipped dimension when some elements of cable-membrane structures are slipped from it's initially designed coordinates by external loads as wind or non uniform load and so on. In order to search the slipped behaviors of cable-membrane structures, a ALE finite element formulation is introduced. In these procedures, a stiffness matrix related with ALE concept is formulated and a FE analysis program for cable-membrane structures with slipped elements is developed.

  • PDF

Formulation of Mass Conservation and Linear Momentum Conservation for Saturated Porous Media in Arbitrary Lagrangian Eulerian(ALE) Description (포화된 다공질 매체의 질량 보존과 운동량 보존에 대한 Arbitrary Lagrangian Eulerian(ALE) 정식화)

  • Park, Tae-Hyo;Jung, So-Chan;Kim, Won-Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 2003
  • The solids and the fluids in porous media have a relative velocity to each other. Due to physically and chemically different material properties and their relative velocity, the behavior of saturated porous media is extremely complicated. Thus, in order to describe and clarify the deformation behavior of saturated porous media, constitutive models for deformation of porous media coupling several effects need to be developed in frame of Arbitrary Lagrangian Eulerian(ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian elements, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media which are considered for the behavior of the solids and the fluids. For this reason, mass balance equations for saturated porous media are derived here in ALE description frames. ALE formulations of mass conservation for the solid phase and the fluid phase are expressed. Then, linear momentum balance equation for porous media as multiphase media is expressed.

  • PDF

Analysis Method for Cable-Membrane Structures with Element Slipping (외력에 의해 요소이동이 발생되는 케이블-막 구조물의 해석 방법)

  • Kang, Joo-Won;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is development of a finite element algorithm to find out the stressed condition, slipped direction and slipped dimension when some elements of cable-membrane structures are slipped from it's initially designed coordinates by external loads as wind or non uniform load and so on. In order to search the slipped behaviors of cable-membrane structures, a Arbitrarily-Lagrangian-Eulerian(ALE) finite element formulation is introduced. In these procedures, a stiffness matrix related with ALE concept is formulated and a FE analysis program for cable-membrane structures with slipped elements is developed. Various examples for cable and membrane structures are presented to verify the program's validation. The results are shown good agreement with that of existed one.

  • PDF

Shock Response Analysis under Underwater Explosion for Underwater Ship using ALE Technique (ALE기법을 이용한 수중함의 수중폭발 충격응답 해석에 관한 연구)

  • Kim, Jae-Hyun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.218-226
    • /
    • 2007
  • In modern naval ships, the design of submarines has continually evolved to improve survivability and it is also important to design ship against shock response. Exiting underwater ship design has been peformed due to results of static analysis considering shock acceleration by simple method. However, it can not be anticipated good assesment. The present study applied the Arbitrary Lagrangian-Eulerian (ALE) technique, a fluid-structure interaction approach, to simulate an underwater explosion and investigate the survival capability of a damaged submarine liquefied oxygen tank. The Lagrangian-Eulerian coupling algorithm and the equations of state for explosives and seawater were also reviewed. It is shown that underwater explosion analysis using the ALE technique can accurately evaluate structural damage after attack. This procedure could be applied quantitatively to real structural design.

  • PDF

Study on the Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank based on ALE (ALE 기반 외부 보조연료탱크 충돌충격시험 수치해석 연구)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • A fluid-structure interaction analysis should be performed to evaluate the behavior of the internal fuel and its influence in order to confirm the structural soundness of the fuel tank against external impacts. In the past, fluid-structure interaction analyses have been limited to the obtention of numerical simulation results due to the need for considerable computational resources and excessive computation time. However, recently, computer performance has been dramatically improved, enabling complex numerical analyses such as fluid-structure interaction analysis to be conducted. Lagrangian and Euler coupling methods and Lagrangian based analysis methods are mainly used for fluid-structure interaction analysis. Since both of these methods have their advantages and disadvantages, it is necessary to select the more appropriate one when conducting a numerical analysis. In this study, a numerical analysis of a crash impact test for a fuel tank is performed using ALE. The purpose of the numerical analysis is to estimate the possibility of failure of the fuel tank mounted inside the container when it is subjected to a crash impact. As a result of the numerical analysis, the fluid behavior inside the fuel tank is investigated and the stress generated in the fuel tank and the container structure is calculated, thereby enabling the possibility of fuel tank failure and leakage of the internal fluid to be evaluated.

Study on Pullout Behavior of Embedded Suction Anchors in Sand using ALE (Arbitrary Lagrangian Eulerian) Technique (ALE 기법을 이용한 모래지반에서 석션 매입 앵커의 인발 거동 분석)

  • Na, Seon Hong;Jang, In Sung;Kwon, O Soon;Lee, Seung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.167-173
    • /
    • 2014
  • The embedded suction anchor, ESA, is one type of mooring anchor systems which utilizes the suction pile or caisson to penetrate the anchor into the sea bed and develops its capacity under pullout load. In this study, the numerical analysis using ALE (Arbitrary Lagrangian Eulerian) Adaptive Meshing technique was performed to simulate the pullout behavior of the ESA, and the results were compared to those of the previous research, centrifuge model tests and the analytical method based on limit equilibrium theory. The pullout behaviors of the ESA under horizontal, vertical, and inclined loading were evaluated. The analysis results showed that the maximum horizontal pullout load was developed when the location of loading point was at the mid-point, and the each vertical pullout load gave the similar value regardless of the locations of the loading points. The pullout load decreased as the load inclination angle increased at the mid-point of the anchor.