• Title/Summary/Keyword: AL7021-T4

Search Result 2, Processing Time 0.015 seconds

Optimization of the Hydro-Forming Process for Aluminum Bumper Beams by Using Finite Element Analysis (유한요소법을 이용한 하이드로포밍 알루미늄 범퍼빔의 성형공정 최적화)

  • Son, Wonsik;Yum, Sanghyuk;Lee, Jihoon;Kim, Seungmo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.410-417
    • /
    • 2017
  • Hydro-forming is being employed increasingly to realize lightweight vehicular parts. The bumper beam produced by this process weighs 30% less than the conventional products with equal stiffness. However, hydro-forming involves complex parameters to obtain the target geometry and low residual stress. Parametric studies are conducted using finite element analysis to obtain optimized process conditions. Through these numerical approaches, the internal and holding pressures and feeder forward stroke along the extruded direction are optimized to achieve low residual stress and to minimize springback. The numerical results are verified by experimental observations made by employing a three-dimensional laser scanner. The numerical and experimental results are compared in terms of the springback. Both results show similar tendencies.

Low Speed Crash Behaviour of Aluminium Bumper System W.R.T. Design Variables (설계변수에 따른 알루미늄 범퍼 시스템의 저속 충돌해석)

  • Kim, Dae Young;Han, Bo Seok;Hong, Min Sun;Kim, Dong Ok;Cheon, Seong Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • In the present study, the low speed (4 km/h) crash behaviour of an aluminium bumper system was characterised by FE analyses based on the FMVSS 581, which regulates automotive bumpers. Two types of cross-sectional designs, i.e., Model 1, which contains a single rib and Model 2, double ribs, have been considered along with Al7021, 6082 and 6060 for the aluminium bumper back beam. Variations in thickness starting from 2 to 4 mm of the bumper system cross-section in the FE model was implemented in order to investigate the thickness effect on the bumper's crash behaviour.. Three kinds of design variables, namely, number of ribs, material and thickness, are considered. The FE analysis results are summarised with the maximum load and the Specific Energy Absorption (SEA) since they are the key factors in determining the crashworthiness of automotive structures. The results may also be able to indicate how to achieve lightweight structure of the automotive bumper system either directly or indirectly.