• 제목/요약/키워드: AISI 4340 Steel

검색결과 14건 처리시간 0.023초

Evaluation of Mechanical Properties of Ceramic Coating Layers with Nano-sized Silicon Oxides on a Steel Sheet

  • Baik, Youl;Kang, Bo K.;Choi, Yong;Yang, So E.;Lee, Jong J.;Kim, Byung D.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.85-85
    • /
    • 2013
  • A ceramic coating material with nano-sized silicon oxide on AISI 4340 steel for a thermal conductor at a high temperature was analyzed to find an optimum coating process. Average surface roughness of the coating layers prepared by dipping process was about $5.26{\mu}m$. Potassium silicate addition as a binder of the coating material tended to improve its hardness. A pencil scratch hardness testing showed that a loading more than 800 g made fragments of the coating layer.

  • PDF

Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8

  • Brnic, Josip;Brcic, Marino;Krscanski, Sanjin;Lanc, Domagoj;Chen, Sijie
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.409-417
    • /
    • 2019
  • The choice of individual material for industrial application is primarily based on knowledge of its behavior in similar applications and similar environmental conditions. Contemporary design implies knowledge of material behavior and knowledge in the area of structural analysis supported by large capacity computers. Bearing this in mind, this paper presents and analyzes the experimental results related to the mechanical properties of the material considered (30CrNiMo8/1.6580/AISI 4340) at different temperatures as well as its creep and fatigue behavior. All experimental tests were carried out as uniaxial tests. The test results related to the mechanical properties are presented in the form of engineering stress-strain diagrams. The results related to the creep behavior of the material are shown in the form of creep curves, while the fatigue of the material is shown in the form of stress - life (S - N) diagram. Based on these experimental results, the values of the following properties are determined: ultimate tensile strength (${\sigma}_{m,20}=696MPa$), yield strength (${\sigma}_{0.2,20}=355.5MPa$), modulus of elasticity ($E_{,20}=217GPa$) and fatigue limit (${\sigma}_{f,20,R=-1}=280.4MPa$). Results related to fatigue tests were obtained at room temperature and stress ratio R = -1.

EHA 유압펌프 부품의 플라즈마 질화기술 적용에 관한 연구 (A study for Application of ion Nitriding on EHA Hydraulic Pump Parts)

  • 김은영;김범석;이상율
    • 한국표면공학회지
    • /
    • 제38권6호
    • /
    • pp.234-240
    • /
    • 2005
  • In this study, ion nitriding of a EHA pump part made of AISI 4340 steel was performed under different applied power conditions to study the relationship between dimensional changes of specimens and the type of applied power source. Microstructures and micohardness distribution at different processing conditions were also examined. Duplex surface treatment of ion nitriding with the optimum process conditions to produce the minimum dimensional variation in a EHA pump part and a TiN thin film coating by unbalanced magnetron sputtering was performed and the specimens with a duplex surface treatment were subjected to a high speed wear test to evaluate the wear performance of EHA hydraulic pump parts with various surface treatment conditions. Results indicated that uniform and continuous surface layer with a minimum dimensional variation could be obtained by ion nitriding with bipolar mode power source and much enhanced wear characteristics with a duplex surface treatment could be obtained, compared with results from ion nitriding or single-layerd TiN coating specimens.

방전플라즈마소결로 제조된 나노결정 FeNiCrMoMnSiC 합금의 오스테나이트 안정성과 기계적 특성 (Austenite Stability and Mechanical Properties of Nanocrystalline FeNiCrMoMnSiC Alloy Fabricated by Spark Plasma Sintering)

  • 박정빈;전준협;서남혁;김광훈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권4호
    • /
    • pp.336-341
    • /
    • 2021
  • In this study, a nanocrystalline FeNiCrMoMnSiC alloy was fabricated, and its austenite stability, microstructure, and mechanical properties were investigated. A sintered FeNiCrMoMnSiC alloy sample with nanosized crystal was obtained by high-energy ball milling and spark plasma sintering. The sintering behavior was investigated by measuring the displacement according to the temperature of the sintered body. Through microstructural analysis, it was confirmed that a compact sintered body with few pores was produced, and cementite was formed. The stability of the austenite phase in the sintered samples was evaluated by X-ray diffraction analysis and electron backscatter diffraction. Results revealed a measured value of 51.6% and that the alloy had seven times more austenite stability than AISI 4340 wrought steel. The hardness of the sintered alloy was 60.4 HRC, which was up to 2.4 times higher than that of wrought steel.