• Title/Summary/Keyword: AISI

Search Result 404, Processing Time 0.024 seconds

Effect of Quenching Temperature Change on Hardenability of AISI 51B20 Boron Steel (AISI 51B20 보론첨가강의 경화능에 미치는 오스테나이트화 온도의 영향)

  • Kim, Heon-Joo;Park, Moo-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.315-322
    • /
    • 2010
  • Effect of hardenability, grain size and microstructural change according to the change of austenitizing temperature was analyzed in Jominy hardenability test of AISI 51B20 steel. Grain growth was small, 7 ${\mu}m$ and 12 ${\mu}m$ austenite grain sizes at austenitizing temperature of $900^{\circ}C$ and $1000^{\circ}C$, respectively, while rapid grain growth was observed up to 30 ${\mu}m$ austenite grain size at austenitizing temperature of $1100^{\circ}C$. As austenitizing temperature increased from $900^{\circ}C$ to $1100^{\circ}C$, hardenability in the region within 15 mm from end-quenched surface decreased due to the grains growth of bainite and martensite mixture, on the other hand the hardenability in the region exceeding 15 mm from end-quenched surface increased. Increased hardenability was attributed to different microstructures; pearlite, fine pearlite and bainite, and bainite and martensite structures at austenitizing temperature of $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$, respectively.

Sliding Wear Behavior of AISI 52100 Steel with Pearlitic and Bainitic Microstructures (미세조직 변화에 따른 AISI 52100 강의 미끄럼마멸 특성)

  • Yoon, N.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.479-484
    • /
    • 2011
  • Dry sliding wear behavior of AISI 52100 steel that has a pearlite or bainite microstructure was characterized to explore the effect of microstructure on the wear of the steel. Isothermal heat treatments were employed to obtain the different microstructures. Pin-on-disk type wear tests of the steel disk were performed at loads of 25~125N in air against an alumina ball. Sliding speed and wear distance used were 0.1m/sec and 300m, respectively. Worn surfaces, wear debris and cross-sections of the worn surfaces were examined with SEM to investigate the wear mechanism of the steel. Hardness of the steel was also evaluated. Wear rate of the steel was correlated with the hardness and the microstructure. On the whole, wear resistance increased with an increase in hardness. However, the pearlite microstructure showed superior wear resistance as compared to the bainite microstructure with a similar hardness. The effect of the microstructure on the wear rate was attributed to the morphological differences of the carbide in the microstructure, which was found to have a significant effect on strain hardening during the wear.

A Study of Micro-Channel Fabrication by Micro-Milling and Magnetic Abrasive Deburring (마이크로 밀링과 자기디버링을 적용한 마이크로 유동채널 가공)

  • Kwak, Tae-Kyung;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.899-904
    • /
    • 2011
  • This This study aims to verify burr formation and to remove the burrs in micro-channel fabrication using micro-machining tools. The machining processes are combined with micro-milling and magnetic abrasive deburring for AISI316 stainless steel. Depending on the micro-milling conditions that are applied, burrs are formed around the side walls. Magnetic abrasive deburring is used to remove these burrs. AISI316 stainless steel is a nonferrous material and its magnetic flux density, which is an important parameter for efficient magnetic abrasive deburring, is low. To enhance this magnetic flux density, we design and build a magnetic array table. The effect of removing burrs is evaluated via SEM and a surface tester.

Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing (금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가)

  • Lee, Sung-Yun;Lee, In-Kyu;Jeong, Myeong-Sik;Lee, Jae-Wook;Lee, Seon-Bong;Lee, Sang-Kon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2017
  • In hot forming process, the dies in which excessive worn or crack occurs is reused after repair. Generally hot forming dies are recycled through a welding repair method. Welding repair methods are highly dependent on the skills of engineer. It causes process defects such as dimensional defects and structural defects. Recently, the metal 3D printing method has been applied to the repair of used dies. The aim of this study is to evaluate the wear characteristics of AISI H13 tool steel repaired by 3D printing method. Three kinds of wear specimens were fabricated by using 3D printing, welding, and initial material. A pin-on-disk wear test was carried out to evaluate the wear characteristics. From the result of wear test, the wear characteristics of 3D printing method was superior to that of the welded material, and was similar to that of the initial material.

Experimental Study on the Buckling Behavior of L-Shaped Header System (L-헤더 시스템의 좌굴 거동에 관한 실험 연구)

  • Park, Wan Soon;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.665-674
    • /
    • 2002
  • The back-to-back and box-shaped headers used in light gauge steel structures have some disadvantages, i.e., construction efficiency and cost competitiveness. As such, cold-formed steel L-shaped headers have been developed and are used actively in advanced nations. However, this system has not been used in Korea because of inadequate investigation and adaptation efforts and lack of application example. Thus, this research evaluated the structural performance of L-header using buckling analyses and bending tests. Test results were compared using the AISI design criteria. Test results showed that local buckling and distortional buckling governed buckling behavior in gravity loads and uplift loads, respectively. These results were consistent with the calculated nomial strengths using the AISI design criteria.

Effects of Rare Earth Metal Addition on the Cavitation Erosion-Corrosion Resistance of Super Duplex Stainless Steels

  • 심성익;박용수;김순태;송치복
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.301-301
    • /
    • 1999
  • Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0,4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.

Low Cycle Fatigue Behaviour of AISI 304L Austenitic Stainless Steel Weldment (AISI 304L 오오스테나이트 스테인레스 강 용접부 의 Low Cycle Fatigue 거동에 관한 연구)

  • 김환태;황선효;남수우
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.49-57
    • /
    • 1984
  • The influence of weld defect, residual stress and microstructure on the Low Cycle Fatigue(L. C. F.) behaviour of AISI 304L austenitic stainless steel weldment has been studied. The specimens were welded by shielded metal are welding process, post weld heat treated(PWHT) at 900.deg.C for 1.5hrs, and tested under total strain controlled condition at room temperature. The results of the experiment showed that weld defect affected the L.C.F. behaviour of weldment deleteriously compared to the residual stress or microstructure, and it reduced the L.C.F. life about 70-80%. The PWHT exhibited beneficial effect on the L.C.F. behaviour and increased the L.C.F. life about 120%. This enhancement by PWHT was attributed to the removal of residual stress and recovery of weld metal ductility. The cyclic stress flow of as welded specimens showed intermediate cyclic softening, whereas those of heat treated specimens showed continuous cyclic hardening, and this difference was explained in terms of the residual stress removal and dislocation behaviour. Scanning electron microscopy studies of fatigue fracture surface showed that weld defects of large size and near weld surface were detrimental to the L.C.F. behaviour of weldment.

  • PDF

The Effects of Gas Compositions During Post Nitriding on the AISI 316L Stainless Steel after Plasma Carburizing

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.269-274
    • /
    • 2015
  • In this experiment, post-nitriding treatment was performed at $400^{\circ}C$ on AISI 316 stainless steel which was plasma carburized previously at $430^{\circ}C$ for 15 hours. Plasma nitriding was implemented on AISI 316 stainless steel at various gas compositions (25% $N_2$, 50% $N_2$ and 75% $N_2$) for 4 hours. Additionally, during post nitriding Ar gas was used with $H_2$ and $N_2$ to observe the improvement of surface properties. After treatment, the behavior of the hybrid layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. Meanwhile, it was found that the surface hardness increased with increasing the nitrogen gas content. Also small percentage of Ar gas was introduced in the post nitriding process which improved the hardness of the hardened layer but reduced the corrosion resistance compared with the carburized sample. The experiment revealed that AISI 316L stainless steel showed better hardness and excellent corrosion resistance compared with the carburized sample, when 75% $N_2$ gas was used during the post nitriding treatment. Also addition of Ar gas during post nitriding treatment degraded the corrosion resistance of the sample compared with the carburized sample.

The effects of post nitriding on the AISI 316 stainless steel after Plasma carburizing at various gas compositions (저온 플라즈마침탄처리된 316L 스테인레스 스틸의 플라즈마 후질화 처리시 표면특성에 미치는 가스조성의 영향)

  • Lee, In-Seop;Debnath, Sanket
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.177-178
    • /
    • 2012
  • In this experiment, post-nitriding treatment has been performed at $400^{\circ}C$ on AISI 316 stainless steel which is plasma carburized previously at $430^{\circ}C$ for 15 hours. Plasma nitriding was implemented on AISI 316 stainless steel at various gas compositions (25% N2, 50% N2 and 75% N2) for 4 hours. Additionally, during post nitriding Ar gas was used with H2 and N2 to observe the improvement of treatment. After treatment, the behavior of the hybrid layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. Meanwhile, it was found that the surface hardness increased with increasing the nitrogen gas content. Also small percentage of Ar gas was introduced in the post nitriding process which improved the hardness of the hardened layer but reduces the corrosion resistance compared with the carburized sample. The experiment revealed that AISI 316L stainless steel showed better hardness and excellent corrosion resistance compared with the carburized sample, when 75% N2 gas was used during the post nitriding treatment. Also addition of Ar gas during post nitriding treatment were degraded the corrosion resistance of the sample compared with the carburized sample.

  • PDF

A Study on the Mechanical Properties of Weldments for AISI 409L Ferritic Stainless Steel (자동차 배기계용 AISI 409L 페라이트계 스테인리스강 용접부 물성에 관한 연구)

  • Lee, Sang Hwa;Shin, Yong Taek;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • In this study, we prepared a sample of AISI 409L weld metals using automotive exhaust manifolds and evaluated their corrosion properties by conducting an anodic polarization test after 10 minute of heat treatment at $900^{\circ}C$. The specimens of AISI 409L transformed fully ferrite. Weld metal was refined more than base metal. Specimen of heat treatment at $900^{\circ}C$ and as weld specimen was formed precipitation. However heat treatment specimen was bulkly formed and coarser than the as weld specimen. The strength measured by 10 Hv highly at heat treatment specimens in comparison with as weld. The increase in strength is attributed to the precipitation of Ti. The result of heat treatment suggest that there was a decrease of current density and high corrosion potential. Following heat treatment process produced Ti precipitation and for this reason, it can restrain Cr-carbide so that steel will have more corrosion resistance.