• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.029 seconds

Development of a Numerical Model for Prediction of the Cooling Load of Nutrient Solution in Hydroponic Greenhouse (수경온실의 양액 냉각부하 예측모델 개발)

  • 남상운;김문기;손정익
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 1993
  • Cooling of nutrient solution is essential to improve the growth environment of crops in hydroponic culture during summer season in Korea. This study was carried out to provide fundamental data for development of the cooling system satisfying the required cooling load of nutrient solution in hydroponic greenhouse. A numerical model for prediction of the cooling load of nutrient solution in hydroponic greenhouse was developed, and the results by the model showed good agreements with those by experiments. Main factors effecting on cooling load were solar radiation and air temperature in weather data, and conductivity of planting board and area ratio of bed to floor in greenhouse parameters. Using the model developed, the design cooling load of nutrient solution in hydroponic greenhouse of 1,000$m^2$(300pyong) was predicted to be 95,000 kJ/hr in Suwon and the vicinity.

  • PDF

Numerical Models for Atmospheric Diffusion Phenomena by Pseudospectral Method(2) : Spectral Model for a Hilly Terrain of Real Scale (의사스펙트로법에 의한 대기확산현상의 수치모델(2): 실규모의 복잡지형에서의 스펙트로모델)

  • 김선태
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.242-246
    • /
    • 1993
  • Theoretically, spectral method has the highest accuracy among present numerical methods, but it is generally difficult to apply to complex terrains because of complex boundary conditions. Recently, spectral-element method, basically divide the domain into a set of rectangular subdomain and solve the equation at each subdomain, has been introduced. However, boundary conditions become more complex and requires more computing time, thus spectral-element method is not powerful for all complex terrain problems. In this paper, potential flow theory was intorduced to solve the air flows and diffusion phenomenon in the presence of terrain obstacles. Using the velocity potential-stream line orthogonal coordinate space, the diffusion problems of hilly terrain by pseudospectral method were solved and compared those with no terrain real scale solutions.

  • PDF

Numerical Studies on Combustion Characteristics of Diesel Engines using DME Fuel (DME연료 디젤 엔진에서의 연소특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and spray combustion processes in DI diesel engine using DME and n-heptane. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model has been utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Based on numerical results, the detailed discussion has been made for the distinctly different combustion characteristics of DME diesel engine in term of vaporization, ignition delay, pollutant formation, and heat release rate.

A Study on the Anti-Air-Artillery Threat Envelop Analysis (비행표적에 대한 대공포 위협도 분석 연구)

  • Yang, Chang-Deok;Hong, Young-Seok;Yang, Ji-Youn;Kim, Cheon-Young;Reu, Tae-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.9-12
    • /
    • 2011
  • 본 논문에서는 지대공 교전모의를 위한 대공포 모델을 설계하였다. 교전모의를 위한 대공포 모델은 조준점을 획득하기 위해 비행표적의 현재 상태에 대해서 표적 비행경로를 예측해야 한다. 비행표적으로 발포하는 포탄의 조준 정보을 계산하기 위해 비행표적에 대한 조준점 예측 기법을 소개하였다. 비행표적의 살상확률을 Calton Function을 이용하여 계산하였다. 표적의 속도, 위치 변화에 따른 대공 살상영역을 분석하였다. 본 연구에서 설계한 대공포의 분석결과를 MSA 프로그램의 결과와 비교하였다.

Gas Permeation Characteristics of PVC/PS Blend Laminated Membranes Prepared by Water Casting (PVC/PS 혼합 수면 전개 적층막의 기체투과 특성)

  • 남석태;최호상;김병식
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.108-116
    • /
    • 1993
  • In PVC/PS pelyblend laminated membranes, perrneabilities were increased as increasing the blend ratio of PS and selectivities were increased with increasing the blend ratio of PVC. The gas permeation mechanism was shifted from the combination of Poiseuille and Knudsen flow model to the solution-diffusion model as decreasing the PS blend ratio. The structure of polyblend laminated membranes showed series model, where PS rich phase was formed at air side and PVC rich phase was at water side. The model of permeation in the polyblend laminated membranes also showed series model structure.

  • PDF

The Prediction model of Carbonation Process Using the Air Permeability Coefficient for Concrete (콘크리트의 투기계수를 이용한 중성화진행 예측모델)

  • Lim, Chang-Hyuck;Kim, Gyu-Yong;Lee, Tae-Gyu;Lee, Eui-Bae;Didolkar, Rahul B.;Kang, Suk-Pyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.221-222
    • /
    • 2010
  • In this study an expression is obtained the model equation for the prediction of carbonation based on the time and interaction velocity between $CO_2$ and $Ca(OH)_2$ diffusion coefficient.

  • PDF

Analysis of New DI Diesel Combustion Chamber System using New Spray Wall Impaction Model (새로운 충돌모델을 이용한 신형식 디젤연소실 분석)

  • Chang W. S.;Kim D. J.;Park K.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.54-65
    • /
    • 1997
  • Wall wetting in diesel engines has been considered as a bad phenomenon because of fuel deposition which makes fuel/air mixing and evaporation worse. In order to avoid the problem, many research works have been carried out. One of the studies is on new combustion chamber systems which are using spray impacting on a wall. In this study a new type of chamber system is analysed using wall impaction model introduced and assessed in the coupled paper. The gas phase is modelled in terms of the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction, The liquid phase is modelled following the discrete droplet model approach in Lagrangian form. With various conditions the spray distribution, vapor contour and gas flows are analyzed, and then design factors of those combustion systems are recommended.

  • PDF

A Numerical Study on the Two-Dimensional Turbulent Natural Convection Using a Low-Reynolds Number k-$\varepsilon$ Model (저레이놀즈수 k-$\varepsilon$ 모델을 사용한 2차원 자연대류 난류현상에 대한 수치적 연구)

  • 강덕홍;김우승;이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.741-750
    • /
    • 1995
  • The turbulent buoyancy-driven flow in 2-dimensional enclosed cavities heated from the vertical side is numerically calculated for both cases of a Rayleigh number of 5*10$^{10}$ for air and 2.5*10$^{10}$ for water. Three different turbulence models are considered : standard k-.epsilon. model of Ozoe and low-Reynolds-number model of Lam and Bremhorst, and another low-Reynolds-number model of Davidson. The results indicate that the use of low-Reynolds number models is recommended for the indoor airflow computation, and the results from Davidson model are reasonably close to the reported experimental data. A sensitivity study shows that the amounts of wall-heat transfer and the velocity profiles with the Lam and Bremhorst model largely depend on the choice of the wall function for .epsilon..

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

Numerical Simulation of Auto-ignition Process of Diesel Sprays Using Detailed Chemistry and Representative Flamelet Model (상세 화학 반응 모델 및 RIF 모델을 이용한 디젤 분무의 자발화 과정 해석)

  • Yu, Y.W.;Kim, S.K.;Kim, Y.M.;Soh, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 2000
  • The interaction between chemistry and turbulence is treated by employing the Representative Interactive Flamelet (RIF) Model. The detailed chemistry of 114 elementary steps and 44 chemical species is adopted for the n-heptane/air reaction. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the multi-RIF is used. The effect of the number of RIF on ignition delay is discussed in detail. Numerical results indicate that the present RIF approach successfully predicts the ignition delay time as well as the essential features of a spray auto-ignition process.

  • PDF