• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.028 seconds

Development of Reconfigurable Tactical Operation Display Framework by Battery and Battalion (포대/대대 별 재구성 가능한 전술작전화면 프레임워크 개발)

  • Lee, Sangtae;Lee, Seungyoung;Wi, SoungHyouk;Cho, Kyutae
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.476-485
    • /
    • 2017
  • The tactical operation centers of future anti-aircraft missile systems provide the environment for the research on future air threats, tactical information, integrated battlefield environment creation and management, engagement control and command and control algorithms. To develop the key functional elements of integrated battlefield situation creation and processing and tactical operation automation processing operations, battery/battalion tactical operation control and reconfiguration design software are required. Therefore, the algorithm software of each function and the tactical operation display software and link software for interworking between equipment were developed as reconfigurable through a data-centric design. In this paper, a tactical operation display framework that can be reconfigured on the operation display of the tactical operations according to the battery/battalion is introduced. This tactical operation display framework was used to develop a common data model design for the reconfigurable structure of multi-role tactical operations with battery / battalion and mission views, and a display configuration tool that provides a tactical operation display framework for view development was also developed using the MVC pattern. If the tactical operation display framework is used, it will be possible to reuse the view design through the common base structure, and a view that can be reconfigured easily and quickly will also be developed.

Development of Cultivation Facility Models to Reduce High Temperature Damage in Oak Mushroom (Lentinula edodes) Cultivation Using Bed-logs (고온피해 경감을 위한 표고 원목재배사 모델개발)

  • Kim, Own-Su;Kim, Seon-Cheol;Lee, Byeong-Seok;Kwon, Hyuk-Woo;Ko, Han-Gyu;Park, Heung-Soo
    • Journal of Mushroom
    • /
    • v.14 no.3
    • /
    • pp.119-126
    • /
    • 2016
  • Five empirical farmhouses were selected to reduce the high temperature damage in oak mushroom cultivation using bed-logs. The cultivation facilities were categorized as follows: those having two blackout curtains or one blackout curtain and outdoor oak mushroom cultivation. The inequality of the indoor condition, oak mushroom hyphae rampant ratio, and fruit body production in each test condition was evaluated. $3^{\circ}C$ was lower in indoor temperature of cultivation facility having two blackout curtains than one blackout curtain. Specifically, the indoor air humidity average of cultivation facilities having one or two blackout curtains was 10% lower than that of outdoor oak mushroom cultivation. This condition is not ideal for oak mushroom cultivation as continuous indoor humidity control is essential for producing good fruit bodies. The Inoculated bed-log surface and oak mushroom hyphae rampant ratio of bed-logs cultivated with two blackout curtains was superior to other tested conditions. The mushroom production ratio observed in facilities with two blackout curtains was 117-204% higher than those cultivated in facilities with only one blackout curtain. Furthermore, the mushroom production ratio increased in based on these findings, we recommended five cultivation facility models to reduce high temperature damage in oak mushroom cultivation using bed-logs.

Development of 2.5D Photon Dose Calculation Algorithm (2.5D 광자선 선량계산 알고리즘 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • In this study, as a preliminary study for developing a full 3D photon dose calculation algorithm, We developed 2.5D photon dose calculation algorithm by extending 2D calculation algorithm to allow non-coplanar configurations of photon beams. For this purpose, we defined the 3d patient coordinate system and the 3d beam coordinate system, which are appropriate to 3d treatment planning and dose calculation. and then, calculate a transformation matrix between them. For dose calculation, we extended 2d "Clarkson-Cunningham" model to 3d one, which can calculate wedge fields as well as regular and irregular fields on arbitrary plane. The simple Batho's power-law method was implemented as an inhomogeneity correction. We evaluated the accuracy of our dose model following procedures of AAPM TG#23; radiation treatment planning dosimetry verifications for 4MV of Varian Clinac-4. As results, PDDs (percent depth dose) of cubic fields, the accuracy of calculation are within 1% except buildup region, and $\pm$3% for irregular fields and wedge fields. And for 45$^{\circ}$ oblique incident beam, the deviations between measurements and calculations are within $\pm$4%. In the case of inhomogeneity correction, the calculation underestimate 7% at the lung/water boundary and overestimate 3% at the bone/water boundary. At the conclusions, we found out our model can predict dose with 5% accuracy at the general condition. we expect our model can be used as a tool for educational and research purpose.. purpose..

  • PDF

The Analysis of the Nocturnal Ozone Variations over Kangreung and Wonju (강릉과 원주지역의 야간 오존 변화에 대한 분석)

  • Kim, Hyun-Sook;Lee, Hyun-Jin;Kim, Jae-Hwan
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.474-483
    • /
    • 2004
  • This paper analyzed the characteristics of daily ozone variations over Kangreung and Wonju. It was found that the diurnal cycle of ozone over Wonju has a primary ozone peak in the afternoon and a minimum around sunrise, which is a typical diurnal ozone cycle observable in the urban area. However, the cycle over Kangreung shows a primary peak in the afternoon and secondary peak around 3 a.m. The amounts of ozone in the secondary peak is occasionally higher than that in the primary peak. This nocturnal ozone peak is frequently observed year-round, and the highest frequency and extent are observed in spring. The possible cause of this nocturnal ozone increase was investigated using meteorological parameters and the HYSPLIT trajectory model. It was found that the nocturnal ozone peak is highly correlated with strong wind speed, which has led to positive temperature anomaly. The trajectory model revealed that when the secondary peak occurred, the air was originated from the west and a sinking motion subsequently followed. These findings suggested that when the westerly wind is strongest in spring, the polluted airs from urban areas are transported to the upper boundary layer over Kangreung area. In the case of strong wind during the night, nocturnal ozone peaks were produced by active vertical mixing between lower boundary and upper boundary layers.

Improvement of Building-Construction Algorithm for Using GIS data and Analysis of Flow and Dispersion around Buildings (GIS 자료사용을 위한 건물 구축 알고리즘 개선 및 건물 주변 흐름과 확산 분석)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.731-742
    • /
    • 2014
  • In this study, we developed a new algorithm which can construct model buildings used as a surface boundary in numerical models using GIS with latitudinal and longitudinal information of building vertices. The algorithm established the outer boundary of a building first, by finding segments passing neighboring two vertices of the building and connecting the segments. Then, the algorithm determined the region inside the outer boundary as the building. The new algorithm overcame the limit that the algorithm developed in the previous study had in constructing concave buildings. In addition, the new algorithm successfully constructed a building with complicated shape. To investigate effects of the modification in building shape caused by the building-construction algorithm on flows and pollutant dispersion around buildings, a computational fluid dynamics model was used and three kinds of building type were considered. In the downwind region, patterns in flow and pollutant dispersion were little affected by the modification in building shape caused. However, because of reduction in air space resulted from the building-shape modification, vortex structure was not resolved or smaller vortex was resolved near the buildings. The changes in flow pattern affected dispersion patterns of scalar pollutants emitted around the buildings.

Feasibility of Analyzing Soil Organic Carbon Fractions using Mid-Infrared Spectroscopy (중적외선분광분석법을 이용한 토양 유기 탄소 분획 분석)

  • Hong, Seung-Gil;Shin, JoungDu;Park, Kwang-Lai;Lee, Sang-Beom;Kim, Jinho;Kim, Seok-Cheol;Shiedung, Henning;Amelung, Wulf
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.85-92
    • /
    • 2015
  • For concerning the climate change issues, the carbon sequestration and importance of soil organic matter are receiving high attention. To evaluate carbon sequestration in soil is important to determine the soil organic carbon (SOC) fractions such as WESOC (Water extractable soil organic carbon), and $CO_2$ emission by soil microbial respiration. However, the analyses for those contents are time-consuming procedure. There were studied the feasibility of MIRS (Mid-Infrared Spectroscopy), which has short analysis time for determining the WESOC and an incubated carbon in this study. Oven-dried soils at $100^{\circ}C$ and $350^{\circ}C$ were scanned with MIRS and compared with the chemically analyzed WESOC and cumulative carbon dioxide generated during 30, 60, 90, and 120 days of incubation periods, respectively. It was observed that an optimized determination coefficient was 0.6937 between WESOC and untreated soil processed by spectrum vector normalization (SNV) and 0.8933 between cumulative $CO_2$ from 30 days incubation and soil dried at $350^{\circ}C$ after subtracting air-dried soil processed by 1st derivatives. Therefore, it was shown that Quantification of soil organic carbon fractions was possibility to be analyzed by using MIRS.

A study on simulation modeling of the underground space environment-focused on storage space for radioactive wastes (지하공간 환경예측 시뮬레이션 개발 연구-핵 폐기물 저장공간 중심으로)

  • 이창우
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.306-314
    • /
    • 1999
  • In underground spaces including nuclear waste repository, prediction of air quantity, temperature/humidity and pollutant concentration is utmost important for space construction and management during the normal state as well as for determining the measures in emergency cases such as underground fires. This study aims at developing a model for underground space environment which has capabilities to take into account the effects of autocompression for the natural ventilation head calculation, to find the optimal location and size of fans and regulators, to predict the temperature and humidity by calculating the convective heat transfer coefficient and the sensible and latent heat transfer rates, and to estimate the pollutant levels throughout the network. The temperature/humidity prediction model was applied to a military storage underground space and the relative differences of dry and wet temperatures were 1.5 ~ 2.9% and 0.6 ~ 6.1%, respectively. The convection-based pollutant transport model was applied to two different vehicle tunnels. Coefficients of turbulent diffusion due to the atmospheric turbulence were found to be 9.78 and 17.35$m^2$/s, but measurements of smoke and CO concentrations in a tunnel with high traffic density and under operation of ventilation equipment showed relative differences of 5.88 and 6.62% compared with estimates from the convection-based model. These findings indicate convection is the governing mechanism for pollutant diffusion in most of the tunnel-type spaces.

  • PDF

Seasonal Variations of Direct Solar Irradiance with Ground and Air Atmospheric Data Fusion for Peninsular Type Coastal Area (지상 및 고도별 대기측정 자료 융합을 이용한 반도형 해안지역의 직달일사량 계절 변화 연구)

  • Choi, Ji Nyeong;Lee, Sanghee;Seong, Sehyun;Ahn, Ki-Beom;Kim, Sug-Whan;Kim, Jinho;Park, Sanghyun;Jang, Sukwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.411-423
    • /
    • 2020
  • Localized solar irradiance is normally derived from atmospheric transmission influenced by atmospheric composition and conditions of the target area. Specially, for the area with complex coastal lines such as Taean gun, the accurate estimation of solar irradiance requires for in depth analysis of atmospheric transmission characteristics based on the localized vertical profiles of the key atmospheric parameters. Using MODTRAN (MODerate resolution atmospheric TRANsmission) 6, we report a computational study on clear day atmospheric transmission and direct solar irradiance estimation of Taean gun using the data collected from 3 ground stations and radiosonde measurement over 93 clear days in 2018. The MODTRAN estimated direct solar irradiance is compared with the measurement. The results show that the normalized residual mean (NRM) is 0.28 for the temperature based MODTRAN atmospheric model and 0.32 for the pressure based MODTRAN atmospheric model. These values are larger than 0.1~0.2 of the other study and we understand that such difference represents the local atmospheric characteristics of Taean gun. The results also show that NRM tends to increase noticeably in summer as the temperature increases. Such findings from this study can be very useful for estimation and prediction of the atmospheric condition of the local area with complex coastal lines.

Six Major Shifts and Implications of the Video Distribution Ecosystem in the Era of N-screen and OTT Services: A case of US media industry (N-/멀티스크린 및 OTT 서비스시대의 미디어 생태계 변환의 여섯 가지 특징과 함의: 미국 사례)

  • Han, Gwang Jub James
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.8
    • /
    • pp.342-364
    • /
    • 2014
  • The purpose of this paper is to provide an answer for the following question: What are the major shifts and implications of the unprecedently competitive and rapidly changing media ecosystem in the era of N-screen and OTT services? I've attempted to understand the complex and competitive nexus among media from an historical context by focusing on the displacement vs. complement thesis. The TPC model by Han has been employed for the analysis of the current dynamics of US media industries by triangulating three areas: Technology/industry, public policy and consumer/culture. More specifically, the US media landscape is initially divided into two competitive turfs - the competitors equipped with OTT services and the legacy media industry, and then the traditional media industry was grouped again into PayTV group(telecom service providers with IPTV and mobile TV, cable/Satellite TV networks) and Free (over-the-air) TV networks. Six major shifts were identified by the analysis: power shift in telecom carriers, power shifts in TV industry, Telecom/OTT partnership, time shifts, place shifts, and finally business model shifts.

Characteristics and Identification of Ambient VOCs Sources in Busan Industrial Area (부산시 공입지역 환경 대기 중 VOCs 특성 및 발생원 규명)

  • Cheong, Jang-Pyo;You, Sook-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.644-655
    • /
    • 2011
  • VOCs (Volatile Organic Compounds) have adverse effects on human health and have caused serious global air pollution problems such as ozone depletion and cimate changes. The total of 56 target VOCs were selected to be monitored in this study for 4 years (2006~2009). The VOCs were measured every hour. The concentration of BTEX was higher than the other target compounds. Generally, the levels of VOCs measured in this study were higher than those measured by the other studies because Gamjeon and Jangrim monitering sites are located in industrial areas. The seasonal variations showed that the VOCs were the highest in winter. The temporal variations showed that the VOCs were high during commuting time on weekday. PMF model was used to resolve source types and source contributions of VOCs in this study. Identified sources and quantified contributions resolved by PMF were vehicle exhaust (15.22%), thinning solvent (29.83%), surface coating (17.13%), industries (13.95%), LPG vehicle (15.22%), combustion boiler (7.11%) and biogenic source (6.61%). Thinning solvent and Surface coating were the most contributed sources possibly due to manufactures and automobile garages in Gamjeon and solvent and paint manufactures in Sasang-Gu.