• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.031 seconds

Development of ANN- and ANFIS-based Control Logics for Heating and Cooling Systems in Residential Buildings and Their Performance Tests (인공지능망과 뉴로퍼지 모델을 이용한 주거건물 냉난방 시스템 조절 로직 및 예비 성능 시험)

  • Moon, Jin-Woo
    • Journal of the Korean housing association
    • /
    • v.22 no.3
    • /
    • pp.113-122
    • /
    • 2011
  • This study aimed to develop AI- (Artificial Intelligence) based thermal control logics and test their performance for identifying the optimal thermal control method in buildings. For this objective, a conventional Two-Position On/Off logic and two AI-based variable logics, which applied ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-Fuzzy Inference System), have developed. Performance of each logic was tested in a typical two-story residential building in U.S.A. using the computer simulation incorporating MATLAB and IBPT (International Building Physics Toolbox). In the analysis of the test results, AI-based control logic presented the advanced thermal comfort with stability compared to the conventional logic while they did not show significant energy saving effects. In conclusion, the predictive and adaptive AI-based control logics have a potential to maintain interior air temperature more comfortably, and the findings in this study could be a solid foundation for identifying the optimal thermal control method in buildings.

A Study on Method of Planning for a Residential Unit under Consideration of Local Climate - Focused on Wind Corridor - (지역기후기능을 고려한 주거단지계획기법에 관한 연구 - 바람길을 중심으로 -)

  • Kim, Dae-Wuk;Jung, Eung-Ho;Ryu, Ji-Won;Park, Ji-Hye
    • Journal of the Korean housing association
    • /
    • v.18 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • This research has been implemented based on the area of #369 Dowon-dong, Dalseo-gu, Dae-gu which is considered as a place with satisfactory characteristics for the flow of fresh air into the city. Simulations of the target area both prior to the development plan and after apartment complex blocking were analyzed in regard to blocking planning and pilotis based on the main direction of wind, $90^{\circ}$ (east wind) and $180^{\circ}$ (south wind). In addition, congested wind corridor flow in the target place was identified through a pollution spread simulation according to the wind corridor. Therefore, the flow of wind in the one area is affected by the blocking of the complex and the main direction of the wind. Also blocking, in regard of pilotis, provides a better flow of wind. This study was implemented based on wind formation by apartment complex planning, so further study on the other factors affecting the flow of a wind corridor along with block planning and pilotis need to be carried out. Sustainable environmental factors through analysis of the environmental factors have to be analyzed. Moreover, building and complementing fundamental resources and systematic devices should be supported.

Temperature Control in Autothermal Reforming Reactor (메탄올 자열 개질 반응기에서의 온도제어)

  • Kim, Song Joo;Nam, Ji Hoon;Lee, Jietae;Kim, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • Temperature control of an autothermal methanol reforming reactor which uses the copper-zinc oxide catalyst was studied. Temperature at 1cm below the hot-spot point in the reactor was used for the controlled variable, and the air flow rate was used for the manipulated variable. A first order plus time delay model was identified and controller parameters were obtained by applying the IMC-PI tuning rule to the identified model. With this controller, we could control the reforming reactor temperature within ${\pm}5^{\circ}C$ over 100 hours. Change of the hot-spot point due to the catalyst degradation was investigated and it could be used to design an adaptive controller.

The Analysis of Corona Discharge of Surface Flashover Model for Aging Diagnosis of Power Facility (전력설비의 열화 진단을 위한 연면방전 모델에서의 코로나 방전 특성 분석)

  • Pang, Man-Sik;Choi, Jae-Hyeong;Kim, Woo-Jin;Kim, Young-Seok;Kim, Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.314-318
    • /
    • 2011
  • Recently, ultrasound, infrared detector, V-I characteristic, gas analysis, UV (ultra-violet rays) camera etc. is used as inspections and diagnoses of the safety of power equipment. Especially, UV camera have attracted a great deal of interest from the view point of easy judgement. UV camera is used corona discharge. One of the most important and difficult problems to be solved filer design, materials and corona discharge. This paper is studied on the temperature characteristics, UV generation and shape analysis and corona pulse count according to the electrode distance and applied voltage. Also, Corona discharge characteristics in air are analyzed using prototype UV camera of Korea. UV generation due to surface discharge of AC is higher than that of DC.

An Experimental Study on the Flame Dynamics in the Model Combustor with V-gutter type Flameholder (V-gutter 형 보염기가 장착된 모델 연소기 내에서 발생하는 화염 동특성 연구)

  • Song, Jin-Kwan;Jeong, Chan-Young;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.379-385
    • /
    • 2010
  • Mechanism of combustion frequencies occurring during combustion is experimentally investigated in a model combustor with V-gutter flameholder. The combustor has a long duct shape with a cross section area of $40{\times}40mm$. The v-gutter type flameholder with 10, 12, 14mm width is mounted at the side wall of combustor. CNG were used as fuel, and the fuel was injected transversely into air crossflow. It is found that combustion frequencies were considered as first longitudinal mode caused by combustor geometry. And it is found that flameholder length affects the flame holding range. Also, it is observed first longitudinal pressure oscillations make significant changes of flame structure.

  • PDF

An assessment of friction factor and viscosity models for predicting the refrigerant characteristics in adiabatic capillary tubes (마찰 계수와 점성 계수 모델이 단열 모세관 유동에 미치는 영향 평가)

  • Son, Ki-Dong;Park, Sang-Goo;Jeong, Ji-Hwan;Kim, Lyun-Su
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.47-54
    • /
    • 2008
  • Capillary tubes are widely used as expansion device in small refrigeration systems. The refrigerant flowing in the capillary tube experiences frictional and accelerational head losses, and flashing, simultaneously. In this paper flow characteristics of adiabatic capillary tubes with various friction factor models, two-phase viscosity models, and two-phase frictional multiplier models were simulated. The predicted pressure distribution, mass flow rate are compared with experimental data reported in literature. It is confirmed that the predicting accuracy with homogeneous model can be improved by employing the suitable correlations of friction factor and two-phase viscosity model, and two-phase frictional multiplier.

  • PDF

A Study on Dynamic Simulation of a Hybrid Parallel Absorption Chiller (병렬식 하이브리드 흡수식 냉온수기 동특성 시뮬레이션 연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.630-635
    • /
    • 2008
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism have been modeled. Flow discharge coefficients of the valves and the pumps were optimized for the double-effect mode with solar-heated water circulated. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. And the cases of the double mode with and without the solar energy were compared. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the single mode utilizing the solar energy only is not practical. It is suggested to operate the system in the double mode and the flow rate control system adaptive to variable solar energy input has to be developed.

  • PDF

Temperature Setpoint Algorithm for the Cooling System of a Tilting Train Main Transformer (틸팅열차 주변압기 냉각시스템의 온도설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.387-392
    • /
    • 2008
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of the optimal control algorithm of a cooling system, the mathematical model of a main transformer cooling system was developed. This includes the dynamic model of a main transformer, an oil pump, an oil cooler and a blower. The system algorithm of a cooling system, which consists of the temperature setpoint algorithm and the temperature control algorithm, was developed. Optimal oil temperatures of the inlet and the outlet of the main transformer were obtained by considering the total electric power consumption of the system. The oil inlet temperature was controlled by the blower and the oil outlet temperature was controlled by the oil pump. A simulation program was developed by using the mathematical model and the system algorithm. Simulation results showed that the system algorithm developed from this study may be effectively used to control the main transformer cooling system in a tilting train.

  • PDF

Design Methodology of System-Level Simulators for Wideband CDMA Cellular Standards (광대역 CDMA 셀룰러 표준을 위한 시스템 수준 시뮬레이터의 설계 방법론)

  • Park, Sungkyung
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2013
  • This tutorial paper presents the design methodology of system-level simulators targeted for code division multiple access (CDMA) cellular standards such as EV-DO (Evolution-Data Only) and broadcast multicast service (BCMCS). The basic structure and simulation flow of system-level simulators are delineated, following the procedure of cell layout, mobile drops, channel modeling, received power calculation, scheduling, packet error prediction, and traffic generation. Packet data transmissions on the forward link of CDMA systems and EV-DO BCMCS systems are considered for modeling simulators. System-level simulators for cellular standards are modeled and developed with high-level languages and utilized to evaluate and predict air interface performance metrics including capacity and coverage.

Analysis of the ejector for low-pressure evaporative desalination system using solar energy (태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석)

  • Hwang, In-Seon;Joo, Hong-Jin;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.