• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.035 seconds

Relationship between Household Air Quality and Hearing Loss in Korean Adults: Analysis of Data from The Korea National Health and Nutrition Examination Survey 2020~2021 (우리나라 성인에서 가정 실내공기질과 난청 사이의 관계: 국민건강영양조사 2020~2021)

  • Sang Shin PYO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.3
    • /
    • pp.248-256
    • /
    • 2024
  • The purpose of this study was to identify the household air pollutants most significantly impacting hearing loss, using data from the 8th Korea National Health and Nutrition Examination Survey. Of the 1,980 participants, those with missing data were excluded from the study population, resulting in the final inclusion of 298 participants. Mild hearing loss is defined as a unilateral or bilateral pure-tone threshold average (PTA) of 26~40 dB, and moderate hearing loss is defined as a unilateral or bilateral PTA of 41 dB or higher. The mean of the PTAs for both ears is defined as the sum of the PTAs of the left and the right ears divided by 2. Complex samples multiple logistic regression analysis revealed that formaldehyde exposure independently significantly increased the risk of moderate hearing loss (odds ratio=1.050, P<0.001). Additionally, in the complex samples general linear model, toluene exposure (B=0.026, P<0.001) was found to be independently significantly associated with an increase in the mean of PTAs for both ears, where a higher mean of the PTAs for both ears indicates a decrease in hearing ability. These results suggest a strong association between hearing loss and the presence of toluene or formaldehyde in indoor air.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.

An Empirical Model for Forecasting Alternaria Leaf Spot in Apple (사과 점무늬낙엽병(斑點落葉病)예찰을 위한 한 경험적 모델)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.4 s.69
    • /
    • pp.221-228
    • /
    • 1986
  • An empirical model to predict initial disease occurrence and subsequent progress of Alternaria leaf spot was constructed based on the modified degree day temperature and frequency of rainfall in three years field experiments. Climatic factors were analized 10-day bases, beginning April 20 to the end of August, and were used as variables for model construction. Cumulative degree portion (CDP) that is over $10^{\circ}C$ in the daily average temperature was used as a parameter to determine the relationship between temperature and initial disease occurrence. Around one hundred and sixty of CDP was needed to initiate disease incidence. This value was considered as temperature threshhold. After reaching 160 CDP, time of initial occurrence was determined by frequency of rainfall. At least four times of rainfall were necessary to be accumulated for initial occurrence of the disease after passing temperature threshhold. Disease progress after initial incidence generally followed the pattern of frequency of rainfall accumulated in those periods. Apparent infection rate (r) in the general differential equation dx/dt=xr(1-x) for individual epidemics when x is disease proportion and t is time, was a linear function of accumulation rate of rainfall frequency (Rc) and was able to be directly estimated based on the equation r=1.06Rc-0.11($R^2=0.993$). Disease severity (x) after t time could be predicted using exponential equation $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$ derived from the differential equation, when $x_0$ is initial disease, $b_0\;and\;b_1$ are constants. There was a significant linear relationship between disease progress and cumulative number of air-borne conidia of Alternaria mali. When the cumulative number of air-borne conidia was used as an independent variable to predict disease severity, accuracy of prediction was poor with $R^2=0.3328$.

  • PDF

Evaluation of Adsorption Characteristics of the Media for Biofilter Design (바이오필터설계를 위한 바이오필터 담체의 흡착 특성)

  • Lee, Eun-Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.994-1001
    • /
    • 2008
  • Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.

Prediction of Radish Growth as Affected by Nitrogen Fertilization for Spring Production (무의 질소 시비량에 따른 생육량 추정 모델식 개발)

  • Lee, Sang Gyu;Yeo, Kyung-Hwan;Jang, Yoon Ah;Lee, Jun Gu;Nam, Chun Woo;Lee, Hee Ju;Choi, Chang Sun;Um, Young Chul
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.531-537
    • /
    • 2013
  • The average annual and winter ambient air temperatures in Korea have risen by 0.7 and $1.4^{\circ}C$, respectively, during the last 30 years. Radish (Raphanus sativus), one of the most important cool season crops, may well be used as a model to study the influence of climatic change on plant growth, because it is more adversely affected by elevated temperatures than warm season crops. This study examined the influence of transplanting time, nitrogen fertilizer level, and climate parameters, including air temperature and growing degree days (GDD), on the performance of a radish cultivar 'Mansahyungtong' to estimate crop growth during the spring growing season. The radish seeds were sown from April 24 to May 22, 2012, at internals of 14 days and cultivated with 3 levels of nitrogen fertilization. The data from plants sown on April 24 and May 8, 2012 were used for the prediction of plant growth as affected by planting date and nitrogen fertilization for spring production. In our study, plant fresh weight was higher when the radish seeds were sown on $24^{th}$ of April than on $8^{th}$ and $22^{nd}$ of May. The growth model was described as a logarithmic function using GDD according to the nitrogen fertilization levels: for 0.5N, root dry matter = 84.66/(1+exp (-(GDD - 790.7)/122.3)) ($r^2$ = 0.92), for 1.0N, root dry matter = 100.6/(1 + exp (-(GDD - 824.8)/112.8)) ($r^2$ = 0.92), and for 2.0N, root dry matter = 117.7/(1+exp (-(GDD - 877.7)/148.5)) ($r^2$ = 0.94). Although the model slightly tended to overestimate the dry mass per plant, the estimated and observed root dry matter and top dry matter data showed a reasonable good fit with 1.12 ($R^2$ = 0.979) and 1.05 ($R^2$ = 0.991), respectively. Results of this study suggest that the GDD values can be used as a good indicator in predicting the root growth of radish.

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

Thin Layer Drying and Quality Characteristics of Ainsliaea acerifolia Sch. Bip. Using Far Infrared Radiation (원적외선을 이용한 단풍취의 박층 건조 및 품질 특성)

  • Ning, Xiao Feng;Li, He;Kang, Tae Hwan;Lee, Jun Soo;Lee, Jeong Hyun;Ha, Chung Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.884-892
    • /
    • 2014
  • The purpose of this study was to investigate the drying characteristics and drying models of Ainsliaea acerifolia Sch. Bip. using far-infrared thin layer drying. Far-infrared thin layer drying test on Ainsliaea acerifolia Sch. Bip. was conducted at two air velocities of 0.6 and 0.8 m/sec, as well as three drying temperatures of 40, 45, and $50^{\circ}C$ respectively. The drying models were estimated using coefficient of determination and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, leaf color changes, antioxidant activity, and contents of polyphenolics and flavonoids. The results revealed that increases in drying temperature and air velocity caused a reduction in drying time. The Thompson model was considered suitable for thin layer drying using far-infrared radiation for Ainsliaea accerifolia Sch. Bip. Greenness and yellowness values decreased and lightness values increased after far-infrared thin layer drying, and the color difference (${\Delta}E$) values at $40^{\circ}C$ were higher than those at $45^{\circ}C$ and $50^{\circ}C$. The antioxidant properties of Ainsliaea acerifolia Sch. Bip. decreased under all far-infrared thin layer drying conditions, and the highest polyphenolic content (37.9 mg/g), flavonoid content (22.7 mg/g), DPPH radical scavenging activity (32.5), and ABTS radical scavenging activity (31.1) were observed at a drying temperature of $40^{\circ}C$ with an air velocity of 0.8 m/sec.

Kinetics Study for Wet Air Oxidation of Sewage Sludge (하수슬러지의 습식산화반응에 대한 동력학적 연구)

  • Ahn, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.746-752
    • /
    • 2005
  • In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.