• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.026 seconds

Combined Thermal Radiation with Turbulent Convection Conjugate PCM Model (난류 대류를 도입한 고온 축열 시스템 모델의 열복사 전달에 관한 연구)

  • Kim, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.556-565
    • /
    • 1995
  • The physical model of interest is based upon the concentric cylinder, where the outside cylinder is filled with optically thick and high temperature phase change material(PCM). The fluid is flowing through the inside cylinder to transfer the appropriate energy. The fluid is flowing through the inside cylinder to transfer the appropriate energy. The governing equations for the phase change material including internal thermal radiation and for the turbulent transfer fluid have been employed and numerically solved. The optically thick phase change justifies the P-l spherical harmonics approximation, which is believed to be appropriate choice particularly for the much coupled problem like in this study. The solid/liquid interface, temperature distribution within the PCM and the heat flux from the PCM to the transfer fluid have been obtained and compared with those of laminar transfer fluid. The numerical results show that the turbulent transfer fluid accelerates the solid/liquid interface and results in the increase of heat transfer rate from the PCM. The internal thermal radiation within the PCM, however, does not always playa role to increase the heat transfer rate throughout the inside cylinder. It is believed that the combined heat flux has been picked up more in the inflowing area than in the pure conductive phase change material.

  • PDF

Comparison of Dynamic Operation Performance of LNG Reliquefaction Processes based on Reverse Brayton Cycle and Claude Cycle (Reverse Brayton 사이클과 Claude 사이클 기반 LNG 재액화 공정의 동특성 운전성능 비교)

  • Shin, Young-Gy;Seo, Jung-A;Lee, Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.775-780
    • /
    • 2008
  • A dynamic model to simulate LNG reliquefaction process has been developed. The model was applied to two candidate cycles for LNG reliquefaction process, which are Reverse Brayton and Claude cycles. The simulation was intended to simulate the pilot plant under construction for operation of the two cycles and evaluate their feasibility. According to the simulation results, both satisfy control requirements for safe operation of brazed aluminum plate-fin type heat exchangers. In view of energy consumption, the Reverse Brayton cycle is more efficient than the Claude cycle. The latter has an expansion valve in addition to the common facilities sharing with the Reverse Brayton cycle. The expansion valve is a main cause to the efficiency loss. It generates a significant amount of entropy associated with its throttling and increases circulation flow rates of the refrigerant and power consumption caused by its leaking resulting in lowered pressure ratio. It is concluded that the Reverse Brayton cycle is more efficient and simpler in control and construction than the Claude cycle.

Dynamic Simulation of Transient Operations of a Solar Power-Assisted Absorption Chiller (태양열 보조열원을 이용한 흡수식 시스템의 동적 시뮬레이션에 의한 과도운전 특성 평가)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.78-85
    • /
    • 2010
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism were modeled. And solar radiation and the solar collector were also modeled along with its control design. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the issues of the excessive circulation flow rate and the mismatch between available solar power and cooling load discourages the use of the single mode, but the dual use of gas and solar power is recommendable in view of controllability and enhanced COP.

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

Prediction of Transport Properties for Transporting Captured CO2. 2. Thermal Conductivity (수송조건 내 포집 이산화탄소의 전달물성 예측. 2. 열전도계수)

  • Lee, Won Jun;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.213-219
    • /
    • 2017
  • This study investigated the thermal conductivity of $CO_2$ gas mixtures in order to ascertain the effects of particular impurities in $CO_2$ in pipeline transportation. We predicted the thermal conductivity of three $CO_2$ gas mixtures ($CO_2+N_2$, $CO_2+H_2S$, and $CO_2+CH_4$) by utilizing three different methods : Chung et al., TRAPP, and the REFPROP model. We validated predictions by comparing the estimated results with 216 experimental data for $CO_2+CH_4$, $CO_2+N_2$, and $CO_2+C_2H_6$. Following $CO_2$ transportation conditions, we observed that the model developed by Chung et al. showed the lowest mean deviation of 3.07%. Further investigations were carried out on the thermal conductivity of $CO_2$ gas mixtures based on the Chung et al. model including the effects of the operation parameters of pressure, temperature, and mole fraction of impurities.

Analysis on the performance characteristics of a variable-speed, roller-type vane compressor operating at low evaporating temperature (낮은 증발온도에서 운전되는 가변속 롤러형 베인 압축기의 성능특성에 관한 분석)

  • 김봉훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.193-204
    • /
    • 1999
  • Performance of a variable-speed, roller-type vane compressor was evaluated at low evaporating temperature. First, an experimental investigation was conducted to examine the performance variation as functions of both outdoor temperature and rotating speed. For this purpose, a typical heat pump was implemented as a test apparatus to measure mass flow rate and power input. Secondly, computational investigations corresponding to the heat pump test conditions were performed to predict compressor performance using ORNL Map-Based compressor model. Results obtained from the heat-pump experiments showed that both mass flow rate and power consumption were sensitively dependent on both evaporating temperature and compressor speed as was predicted from the computational results. From the comparisons of both experimental and computational results, it was well recognized that the ORNL model was subjected to larger error in the accuracy of prediction as outdoor temperature decreased. When the outdoor temperature was above $-5^{\cire}C$, errors of predicted values corresponding to both mass flow rate and power consumption were estimated as $\pm$10% and $\pm$ 15%, respectively. Finally, it is suggested that the ORNL model needs to be re-evaluated if compressor map data tested below $-5^{\cire}C$(in evaporating temperature) are available.

  • PDF

Turbulent natural convective heat transfer charateristics in a square enclosure with control plates attached at the horifontal partition (제어판이 부착된 수평격판에 의해 분리되는 밀폐공간내의 난류 자연대류 열전달 특성)

  • 김점수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.150-160
    • /
    • 2000
  • Turbulent natural convective flow and heat transfer in a square enclosure with horizontal partition are investigated numerically. The enclosure is composed of a lower hot and a upper cold horizontal walls and adiabatic vertical walls. Partitions carried with the upward, downward, and both control plates are attached perpendicularly to the one of the vertical insulated walls, respectively. The low Reynolds number $k-\varepsilon$ model is adopted to calculate the turbulent thermal convection. The governing equations are solved by using the finite element method with Galerkin method. The computations have been carried out by varying the length of partition, the position of control plates, and the Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height for water(Pr=4.95). When the control plates are attached at the edge of partition, the stability of oscillating flow grows wrose with the increase of Rayleigh number and the partition length. The heat transfer rate has been reducer than that of no control plate due to the restraint of control plates with the increase of Rayleigh number.

  • PDF

Modified Mathermatical Model of S. ENDRENYI and B. PALANCZ for Fluidized Bed Coal Combustion - Effect on the Variation of Specific Surface - (석탄(石炭)의 유동층(流動層) 연소(燃燒)에 관(關)한 S. ENDRENYI와 B. PALANCZ의 수학적(數學的) 수정(修正)모델(비표면적(比表面積) 변화(變化)의 영향(影響)))

  • Kim, M.J.;Rhee, K.S.;Seo, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.1
    • /
    • pp.74-82
    • /
    • 1988
  • A numerical analysis of the mathematical model for fluidized bed coal combustion has been performed. Based on the physical nature of the specific surface variation due to the decreasing of coal particle diameter according to the combustion process, the modified model which has been added the specific surface variation to the S.ENDRENYI and B.PALANCZ's mathematical model was established in this study. From the numerical analysis of these two models, it was found that the perfect combustion time is increasing largely at least 5 seconds in the modified model in comparison with that of the S.ENDRENYI and B.PALANCZ's model, and the bed temperature and the coal particle surface temperature during the main combustion period represent constant with time in the S.ENDRENYI and B.PALANCZ's model, on the other hand, these properties are decreasing linearly with time in the modified model.

  • PDF

A Dynamic Simulation Model of Electronic-Expansion-Valve-Controlled Evaporators (전자팽창밸브 제어성능 모사용 증발기 동특성 모델링)

  • Shin, Young-Gy;Cho, Soo;Tae, Choon-Seob;Jang, Cheol-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • Controlling superheat of indoor units associated with a multi-type heat pump is one of difficult tasks to be addressed. This study suggests a dynamic model of an evaporator based on heat and mass balance. Thermodynamic properties are calculated by a commercial software, Refprop. The model is programmed in MFC Visual C++ for controller interface in real-time mode. The simulation results shows that PI control works for a narrow range of superheat. Beyond the range, the temperature behavior of the refrigerant is quite nonlinear mainly due to phase change. Thus, it is concluded that PI control of superheat has to be supplemented by nonlinear control ideas to avoid saturation and excessive superheat.

Theoretical Analysis of a Rotary Heat Exchanger Based on a Simplified Model (단순모델에 의한 회전형 열교환기 이론해석)

  • Son, Sung Gyun;Kim, Yongchan;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.409-417
    • /
    • 2015
  • A simplified rotary heat-exchanger model was developed with an assumption of a linear temperature distribution along the flow direction. Based on the model, the exact fluid solution and solid temperature variations were obtained and verified from a comparison with previous numerical studies. The heat transfer in the rotary heat exchanger was investigated using the theoretical solutions. The heat exchanger's effectiveness was shown to be saturated, with a rotational-speed increase that is higher than a critical value that is solely dependent on the thermal capacity of the solid matrix but independent of the fluid flow rate; the saturated value of the effectiveness was determined only by the NTU of the heat exchanger. Where the thermal diffusivity of the solid matrix is so slight that the thermal penetration depth becomes smaller than the matrix thickness, the effective thermal capacity of the solid matrix decreased according to the penetration depth.