With different working pressures and substrate biases, Cr-Al-N coatings were deposited by hybrid physical vapor deposition (PVD) method, consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) processes. Cr and Al targets were used for the arc ion plating and the sputtering process, respectively. Phase analysis, and composition, binding energy, and microstructural analyses were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), respectively. Surface droplet size of Cr-Al-N coatings was found to decrease with increasing substrate bias. A decrease of the deposition rate of Cr-Al-N films was expected due to the increase of substrate bias. The coatings were grown with textured CrN phase and (111), (200), and (220) planes. X-ray diffraction data show that all Cr-Al-N coatings shifted to lower diffraction angles due to the addition of Al. The XPS results were used to determine the $Cr_2N$, CrN, and (Cr,Al)N binding energies. The compositions of the Cr-Al-N films were measured by XPS to be Cr 23.2~36.9 at%, Al 30.1~40.3 at%, and N 31.3~38.6 at%.
Quinary component of 3㎛ thick Ti-Al-Si-Cu-N films were deposited onto WC-Co and Si wafer substrates by using an arc ion plating(AIP) system. In this study, the influence of copper(Cu) contents on the mechanical properties and microstructure of the films were investigated. The hardness of the films with 3.1 at.% Cu addition exhibited the hardness value of above 42 GPa due to the microstructural change as well as the solid-solution hardening. The instrumental analyses revealed that the deposited film with Cu content of 3.1 at.% was a nano-composites with nano-sized crystallites (5-7 nm in dia.) and a thin layer of amorphous Si3N4 phase.
TiN coating on tool steel has been widely used for the improvement of durability of tools. In this work, radical nitriding(RN) is carried out on SKD61 at $450^{\circ}C$ for 5 hours in the ammonia gas pressure $2.7{\times}10^3\;Pa$. The TiN coating is carried out by arc ion plating(AIP) with the process parameters: arc power 150 A, bias voltage -50V, coating time 40 minutes and nitrogen gas pressure $4{\times}10^3\;Pa$. Hardness, elastic modulus, friction coefficient and adhesion of TiN coating on substrates of both TiN/SKD61 and TiN/RN SKD61 coatings are investigated comparatively. The primary crystalline faces of TiN surface are(200) and(111) for TiN/SKD61 and TiN/RN SKD61 respectively. In addition to the primary phase, Fe phase exists in TiN/SKD61 coating, but not in TIN/RN SKD61. The hardness of TiN/RN SKD61 is about 700 Hv, 250 Hv(56%) higher than that of TiN/SKD61 at the near interface of TiN and substrates. At the TiN surface, hardness of TiN/RN SKD61 is 2,149 Hv, 71 Hv(3%) higher than that of TiN/SKD61. The elastic modulus of TiN coating is improved to 26.7 GPa(6%) by radical nitriding. The adhesion is improved by the RN coating showing no spalling. buckling and chipping on the scratch test track which are shown on the non-RN TiN/SKD61.
Cho, Yong K.;Kim, Sang K.;Lee, Won B.;Kim, Sung W.
Journal of the Korean Society for Heat Treatment
/
v.20
no.2
/
pp.78-83
/
2007
CrN coatings were deposited by cathodic arc ion plating method on the SKD11 steel substrates. Atmosphere temperature of $350^{\circ}C$, arc current of 90 A, nitrogen partial pressure of 1.0-5.3 Pa, and negative bias voltage of 30-135 V were selected. The characteristics of microstructure were investigated with XRD. Hardness, adhesion and friction coefficient measured by microhardness tester, scratch tester, and ball on disk tribometer. Microstructures depended on nitrogen partial pressure and bias voltage. The preferred orientation of the films was changed from (200) to (111) with decreasing pressure and increasing bias voltage. Adhesion properties related with microstructure, but microstructure changes slightly influenced on hardness and friction properties. The critical load.($Lc_1$) and hardness of CrN films deposited at 5.3 Pa, -30 V condition were 55 N(HF1), $2157{\pm}47\;Hk_{0.025}$. The friction coefficient were about 0.5 under dry condition.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.7
no.1
/
pp.67-74
/
2008
In this paper, the surface characteristics of the AIP-TiN coated of the SKH51 and SKD11 steels under various deposition times are presented with emphasis on the comparison of the two materials. The micro-particle, the surface roughness, the micro-hardness, the coated layer thickness, the atomic distribution of Ti, N and Fe elements and the adhesion are measured for various deposition times. It has been shown that the micro-particle, the surface roughness, the coated layer thickness and the atomic distribution of Ti, N and Fe elements are similar for the two cases regardless of the test deposition time from 10 to 180 minutes. However, it has been shown that the micro-hardness and the adhesion of the SKH51 steel are higher than the SKD11 steel, indicating that they are much affected by the hardness of the material to be coated.
The implanting of metal products is performed with numerous surface treatments because of toxicity and adhesion. Recently, the surface modification of metal products has been actively studied by coating the surface of the TiC or TiN film. We prepared a Ti(10%)Ag Target which may be used in dental oral material by, using the AIP(arc ion plating) system TiAgN coating layer that was deposited on Ti g.23. The purpose of this study was to establish the optimal bias voltage conditions of the coated TiAgN layer formed by the AIP process. The TiAgN coatings were prepared with different bias voltage parameters (0V to -500V) to investigate the effect of bias voltage on their mechanical and chemical properties. The SEM(scanning electron microscope), EDS(energy dispersive X-ray spectrometer), XRD(X-ray diffraction), micro-hardness, and potentiodynamic polarization were measured and the surface characteristics of the TiAgN coating layers were evaluated. The TiAgN coating layer had different mechanical characteristics based on the bias voltage, which also showed differences in thickness and composition.
Phase evolution and tribological behavior of Cr-Mo-N multi compositional films with different interlayer were investigated. The films were deposited by hybrid PVD (Physical Vapor Deposition) system consisted of dc unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) sources. A pure molybdenum (Mo) was used as sputtering target and also a pure Cr was used as AIP target to form the Cr-Mo-N films. Various growth planes were found, no textured surface, in all of the multi composition films. Maximum value of microhardness was measured in Cr-Mo-N film with Mo interlayer as 29 GPa. Composition film was mainly showed the aspect of the adhesive wear than CrN film. The friction coefficient was decreased from 0.6 for pure CrN coating to 0.35 for Cr-Mo-N film with Mo interlayer. This result may come from the formation of metal oxide tribo-layer which is known as solid lubricant during the wear test.
Proceedings of the Korean Institute of Surface Engineering Conference
/
2017.05a
/
pp.116.2-116.2
/
2017
DLC (Diamond like carbon) 박막을 전극 재료로 활용하기 위해서는 높은 전기 저항과 금속성 기판에 대한 낮은 접착력을 극복해야 한다. 본 연구에서는 PECVD에 의해 합성 된 DLC/Ti 전극의 아크 중간층, 질소 도핑, 증착 및 열처리 온도가 접착 강도와 전기적 및 전기 화학적 특성에 주는 영향을 체계적으로 조사 하였다. 그 결과, arc ion plating (AIP) 법에 의해 증착 된 Ti/TiC 중간층의 도입은 스크래치 테스트와 전기화학적 싸이클 테스트에서 향상된 접착 강도 및 수명을 가져온다는 것을 확인 하였다. 그리고 arc 중간층에서의 arc droplet은 DLC 박막의 표면적을 넓혀 전기 화학적 활성도를 높이는 긍정적인 역할을 하였다. 소량의 질소 도핑은 DLC 막의 비저항을 크게 낮춰주었고, 전기화학적 활성도를 증가시켰다. 증착 온도가 높을수록 DLC 막의 sp2/sp3 비율이 증가하였고, 이에 따라 비저항은 감소하였으며 전기 화학적 활성도는 증가하였다. 반면, 가장 높은 전기화학적 전위창은 $300^{\circ}C$ 에서 얻어졌으며 더 높은 온도에서 감소하였다. 열처리 온도를 높일수록 비저항의 감소 및 전기 화학적 활성도가 증가한 반면, 전기화학적 전위창은 지속적으로 감소하였고, 높은 열처리 온도에서는 DLC 전극의 수명이 줄어드는 것을 확인 하였다.
Park, Hyun-Woo;Jeong, Se-Hoon;Kim, Hyun-Young;Lee, Kwang-Min
Korean Journal of Materials Research
/
v.20
no.11
/
pp.570-574
/
2010
A diamond-like carbon (DLC) film deposited on a WC disk was investigated to improve disk wear resistance for injection molding of zirconia optical ferrule. The deposition of DLC films was performed using the filtered vacuum arc ion plating (FV-AIP) system with a graphite target. The coating processing was controlled with different deposition times and the other conditions for coating, such as input power, working pressure, substrate temperature, gas flow, and bias voltage, were fixed. The coating layers of DLC were characterized using FE-SEM, AFM, and Raman spectrometry; the mechanical properties were investigated with a scratch tester and a nano-indenter. The friction coefficient of the DLC coated on the WC was obtained using a pin-on-disk, according to the ASTM G163-99. The thickness of DLC films coated for 20 min. and 60 min. was about 750 nm and 300 nm, respectively. The surface roughness of DLC films coated for 60 min. was 5.9 nm. The Raman spectrum revealed that the G peak of DLC film was composed of $sp^3$ amorphous carbon bonds. The critical load (Lc) of DLC film obtained with the scratch tester was 14.6 N. The hardness and elastic modulus of DLC measured with the nano-indenter were 36.9 GPa and 585.5 GPa, respectively. The friction coefficient of DLC coated on WC decreased from 0.2 to 0.01. The wear property of DLC coated on WC was enhanced by a factor of 20.
Ti based nanocomposite films including V, Si and Nb (Ti-Me-N, Me=V, Si and Nb) were fabricated by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The pure Ti target was used for arc ion plating and other metal targets (V, Si and Nb) were used for sputtering process at a gas mixture of Ar/$N_2$ atmosphere. Mostly all of the films were grown with textured TiN (111) plane except the Si doped Ti-Si-N film which has strong (200) peak. The microhardness of each film was measured using the nanoindentation method. The minimum value of removal rate ($0.5{\times}10^{-15}\;m^2/N$) was found at Nb doped Ti-Nb-N film which was composed of Ti-N and Nb-N nanoparticles with small amount of amorphous phases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.