• 제목/요약/키워드: AIC(Akaike's Information Criterion)

검색결과 29건 처리시간 0.025초

모형 선택에서의 수정된 AIC 사용에 대하여 (Using the corrected Akaike's information criterion for model selection)

  • 송은정;원성호;이우주
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.119-133
    • /
    • 2017
  • 이미 corrected Akaike's information criterion(AICc)가 AIC에 비해 우수한 이론적 성질을 가진 것으로 알려져 있으나, 현재 실제 자료분석에서 최적의 예측 모형을 선택하기 위해 가장 널리 사용되는 정보기준은 여전히 Akaike's information criterion(AIC)이다. 이것은 AICc를 사용함으로써 실제 우리가 어떠한 종류의 이점을 얻을 수 있는가에 대해 논의하고 있는 연구가 부족해서이다. 우리는 이 논문에서 수치 연구를 통해 AIC와 AICc의 성능을 비교하고 AICc 의 사용이 가져오는 장점에 대해 확인을 할 것이다. 또한, 포아송 또는 이항 분포 자료 분석에서 과대산포(overdispersion) 현상이 나타난 경우 사용하는 quasi Akaike's information criterion(QAIC)와 corrected quasi Akaike's information criterion(QAICc) 성능에 대해서도 시뮬레이션을 통해 비교해보고자 한다.

Akaike Information Criterion (AIC)를 이용한 경산 지진관측소 P파와 S파 도착시간 자동추정 (Onset Time Estimation of P- and S-waves at Gyeongsan Seismic Station Using Akaike Information Criterion (AIC))

  • 권조아;강수영;김광희
    • 한국지구과학회지
    • /
    • 제39권6호
    • /
    • pp.593-599
    • /
    • 2018
  • P파와 S파의 도착시간 정보는 지진 발생위치 결정, 1차원 및 3차원 지하구조 등 지진학 연구 수행에 중요한 정보이다. 최근 지진관측소의 수가 비약적으로 증가함에 따라 관측망을 운영하면서 수동으로 지진파의 도착시간을 측정하는 것은 상당한 시간이 소요되는 일이 되었다. 본 연구에서는 진원요소에 대한 사전정보(지진 발생위치와 시간)를 확보할 수 있는 경우 Akaike Information Criterion (AIC)을 적용하여 추가의 관측소에서 국지지진의 P파와 S파의 도착시간을 자동측정하였다. 해당 방법을 경산(DAG2) 지진관측소에 기록된 자료에 적용한 후 수동 측정한 값과 자동 측정한 값을 비교한 결과 P파의 경우 95.1%, S파의 경우 93.7%가 0.1초 이하의 차이를 보이면서 결정되는 것을 확인하였다. 자동측정결과의 높은 정확성은 향후 고밀도 지진관측망 운영에 성공적으로 적용될 수 있음을 시사한다.

A CONSISTENT AND BIAS CORRECTED EXTENSION OF AKAIKE'S INFORMATION CRITERION(AIC) : AICbc(k)

  • Kwon, Soon H.;Ueno, M.;Sugeno, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제2권1호
    • /
    • pp.41-60
    • /
    • 1998
  • This paper derives a consistent and bias corrected extension of Akaike's Information Criterion (AIC), $AIC_{bc}$, based on Kullback-Leibler information. This criterion has terms that penalize the overparametrization more strongly for small and large samples than that of AIC. The overfitting problem of the asymptotically efficient model selection criteria for small and large samples will be overcome. The $AIC_{bc}$ also provides a consistent model order selection. Thus, it is widely applicable to data with small and/or large sample sizes, and to cases where the number of free parameters is a relatively large fraction of the sample size. Relationships with other model selection criteria such as $AIC_c$ of Hurvich, CAICF of Bozdogan and etc. are discussed. Empirical performances of the $AIC_{bc}$ are studied and discussed in better model order choices of a linear regression model using a Monte Carlo experiment.

  • PDF

낮은 신호 대 잡음비 특성을 지닌 탄성파 신호에 적합한 P파 도달시간 결정 알고리즘 연구 (A Study on the P Wave Arrival Time Determination Algorithm of Acoustic Emission (AE) Suitable for P Waves with Low Signal-to-Noise Ratios)

  • 이경수;김진섭;이창수;윤찬훈;최종원
    • 터널과지하공간
    • /
    • 제21권5호
    • /
    • pp.349-358
    • /
    • 2011
  • 본 연구에서는 방사성폐기물처분장에서 발생하는 탄성파와 같이 낮은 신호 대 잡음비로 인하여 P파의 식별이 어려운 신호에 적합한 P파 도달시간 결정 알고리즘에 대한 연구를 수행하였다. 사용된 알고리즘은 임계 전압법, Akaike Information Criterion(AIC), Two step AIC, Hinkley criterion이며 샤프심 압절법에 의하여 생성된 탄성파 신호에 white noise를 적용하여 신호 대 잡음비를 낮추었다. 실험결과 임계전압, AIC, Hinkley criterion 알고리즘의 경우 배경잡음 수준이 증가함에 따라 P파 도달시간의 정확성은 감소하였으나 Two step AIC 알고리즘의 경우 1차적으로 결정된 P파의 도달시간 주변의 신호를 중심으로 특성함수와 AIC 알고리즘을 반복적으로 적용함에 따라 배경잡음 수준에 관계없이 정확한 결과를 나타냈다.

Direction Finding Problem에서의 신호원 갯수 추정 신뢰도에 관한 AIC와 MDL의 비교 (Comparisons of AIC and MDL on Estimation Reliability of Number of Soureces in Direction Finding Problem)

  • 이일근
    • 한국통신학회논문지
    • /
    • 제15권10호
    • /
    • pp.842-849
    • /
    • 1990
  • 본 논문에서는 array processing에서, sensor array를 통해 들어오는 source signal들의 개수를 결정하는 방법들을 판정의 정확도의 관점에서 연구 고찰한다. 첫번째 방법은 Akaike의 Akaike's Information Criterion(AIC)이고, 다른 하나는 Schwartz와 Rissanen의 Minimum Description Length(MDL)이다. 실용적인 측면에서 볼 때, 신호대잡음비 (S/N)가 매우 낮은 상태에서 얻어진 한정된 양의 data를 이용하여 제한된 갯수의 sensor들로 이루어진 array로 부터, 매우 근접해 있는 source signal들의 갯수를 예측해 내는 것은 대단히 중요한 일이다. 본 논문은 simulation 결과를 통하여, source signal들이 근접해 있을수록, array의 sensor 갯수가 줄어들수록, 이용할 data의 양이 한정될수록 또 S/N가 낮아질수록, AIC이 MDL에 비해서 높은 신뢰도를 가짐을 보여준다.

  • PDF

폐기물로부터 메탄발생량 예측을 위한 Sigmoidal 식과 1차 반응식의 통계학적 평가 (Statistical Evaluation of Sigmoidal and First-Order Kinetic Equations for Simulating Methane Production from Solid Wastes)

  • 이남훈;박진규;정새롬;강정희;김경
    • 유기물자원화
    • /
    • 제21권2호
    • /
    • pp.88-96
    • /
    • 2013
  • 본 연구의 목적은 고형폐기물의 메탄발생 특성을 나타내기 위한 1차 반응식과 S형태 식들의 적합성을 평가하는 것이다. S형태 식은 수정 Gompertz와 Logistic 식을 사용하였다. 모델의 적합성을 평가하기 위해 잔차제곱합, 표준제곱근 오차, Akaike's information criterion 등의 통계분석을 실시하였다. AIC (Akaike's information criterion)는 모델의 변수 개수 차이에 따른 모델 적합성을 비교하기 위하여 적용하였다. 1차 반응식의 경우 지체기를 고려하지 않을 때보다 고려하였을 경우 잔차제곱합과 표준제곱근 오차는 감소하는 것으로 나타났다. 그러나 1차 반응식의 경우 S형태 식보다 AIC가 상대적으로 높게 나타났다. 이는 S형태 식이 1차 반응식보다 메탄발생특성을 나타낼 때에 더욱 적합한 것으로 사료된다.

Repetitive model refinement for structural health monitoring using efficient Akaike information criterion

  • Lin, Jeng-Wen
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1329-1344
    • /
    • 2015
  • The stiffness of a structure is one of several structural signals that are useful indicators of the amount of damage that has been done to the structure. To accurately estimate the stiffness, an equation of motion containing a stiffness parameter must first be established by expansion as a linear series model, a Taylor series model, or a power series model. The model is then used in multivariate autoregressive modeling to estimate the structural stiffness and compare it to the theoretical value. Stiffness assessment for modeling purposes typically involves the use of one of three statistical model refinement approaches, one of which is the efficient Akaike information criterion (AIC) proposed in this paper. If a newly added component of the model results in a decrease in the AIC value, compared to the value obtained with the previously added component(s), it is statistically justifiable to retain this new component; otherwise, it should be removed. This model refinement process is repeated until all of the components of the model are shown to be statistically justifiable. In this study, this model refinement approach was compared with the two other commonly used refinement approaches: principal component analysis (PCA) and principal component regression (PCR) combined with the AIC. The results indicate that the proposed AIC approach produces more accurate structural stiffness estimates than the other two approaches.

Discrimination of rival isotherm equations for aqueous contaminant removal systems

  • Chu, Khim Hoong
    • Advances in environmental research
    • /
    • 제3권2호
    • /
    • pp.131-149
    • /
    • 2014
  • Two different model selection indices, the Akaike information criterion (AIC) and the coefficient of determination ($R^2$), are used to discriminate competing isotherm equations for aqueous pollutant removal systems. The former takes into account model accuracy and complexity while the latter considers model accuracy only. The five types of isotherm shape in the Brunauer-Deming-Deming-Teller (BDDT) classification are considered. Sorption equilibrium data taken from the literature were correlated using isotherm equations with fitting parameters ranging from two to five. For the isotherm shapes of types I (favorable) and III (unfavorable), the AIC favors two-parameter equations which can easily track these simple isotherm shapes with high accuracy. The $R^2$ indicator by contrast recommends isotherm equations with more than two parameters which can provide marginally better fits than two-parameter equations. To correlate the more intricate shapes of types II (multilayer), IV (two-plateau) and V (S-shaped) isotherms, both indices favor isotherm equations with more than two parameters.

AIC(AKaike's Information Criterion)을 이용한 교통량 예측 모형 (Traffic Forecasting Model Selection of Artificial Neural Network Using Akaike's Information Criterion)

  • 강원의;백남철;윤혜경
    • 대한교통학회지
    • /
    • 제22권7호
    • /
    • pp.155-159
    • /
    • 2004
  • 최근 교통량 예측을 위한 인공 신경망(Artificial neural networks : ANNs) 구조와 학습방법에 대한 연구가 다양하게 시도되고 있다. 이것은 신경망이 유연한 비선형 모형(non-linear model)으로 강력한 패턴 인식 능력을 가지고 있기 때문이다. 그러나, 신경망은 비선형 모형이기 때문에 많은 매개변수(parameter)를 사용하게 되면서 과적합(overfitting) 문제에 부딪히게 된다. 본 논문에서는 이러한 교통량 예측을 위한 신경망 모형에서 과적합을 해소하기 위한 방안으로 매개변수에 대한 다양한 모형선택기준(model selection criterion)에 대한 적용성에 대해서 알아보았다. 특히, AIC계열을 중심으로 모형선택기준으로 선택된 모형이 과적합 경향을 해소하고 시간적 전이성을 보장할 수 있는지를 분석하는데 본 연구의 목적을 두고 있다. 교통량 자료를 신경망 모형에 적용하여 분석한 결과, 첫째 학습자료(in-sample) 모형선택기준에 의해 선택된 모형이 검증자료(out-of-sample)의 최적의 성능을 보장하지는 못한다는 결과를 얻었다. 즉, 본 연구에서 기존의 연구에서처럼, 학습자료(in-sample)의 최적 모형이 검증자료(out-of-sample)의 성능과 직접적인 관계가 없다는 것을 알 수 있었다. 둘째 모형선택기준의 안정성을 분석한 결과 AIC3, AICC, BIC는 안정적인 모형을 선택하는 기준으로서 의미가 있는 것으로 분석되었다. 하지만, AIC4의 경우는 최상의 모형과 편차가 큰 것으로 분석되었다. 시계열 자료 분석과 예측에 있어서 모형의 불확실성은 학습 자료와 검증 자료의 상관관계에 영향을 줄 수 있음에 비춰볼 때, 앞으로 보다 많은 자료에 대한 분석이 필요하다고 판단되며, 다른 시계열 자료에 대한 분석이 요구된다. 수 없었지만, 확정적 통행배정모형으로 설정한 경우, Stackelberg게임 접근법이 Cournot-Nash게임 접근법 보다 더 우수함을 확인할 수 있었다.다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.리를 정량화 하였다. 특히 선조체에서의 도파민 유리에 의한 수용체 결합능의 감소는 흡연에 의한 혈중 니코틴의 축적 농도와 양의 상관관계를 보였다

특이값 접근방법에 의한 다단 정현파 수의 결정에 관한 연구 (Determination of the Number of Multiple Sinusoids by a Singular Value Approach)

  • 안태천;류창선;이상재
    • 대한전기학회논문지
    • /
    • 제39권8호
    • /
    • pp.868-874
    • /
    • 1990
  • A singular value approach is presented in order to determine the number of multiple sinusoids from the finite noisy data. Simulations are conducted for Akaike's information criterion (AIC), Rissanen's shortest data description (MDL) and a singular value approach, for various examples with different SNR's and methods of estimating frequencies. And then the performances are compared. Simulation results that the singular value approach is superior to AIC and MDL for FBLP, HOYW and covariance matrix based methods are investigated. The approach with contribute to the frequency estimation of multiple sinusoids from the finite noisy data. Furthermore, this will be applied to the DSPs of communication and bio-medical engineering.

  • PDF