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 Abstract

     This paper derives a consistent and bias corrected extension of Akaike’s Information Criterion (AIC),

AICbc, based on Kullback-Leibler information. This criterion has terms that penalize the overparametrization

more strongly for small and large samples than that of AIC. The overfitting problem of the asymptotically

efficient model selection criteria for small and large samples will be overcome. The AICbc also provides a

consistent model order selection. Thus, it is widely applicable to data with small and/or large sample sizes, and

to cases where the number of free parameters is a relatively large fraction of the sample size. Relationships with

other model selection criteria such as AICc of Hurvich, CAICF of Bozdogan and etc. are discussed. Empirical

performances of the AICbc are studied and discussed in better model order choices of a linear regression model

using a Monte Carlo experiment.
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1. Introduction

     As is well known, modeling may be considered as a process approximating a system,

where the approximation may be governed by some objectives, in order to understand
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observations of or predictions of a system’s future behavior. Though there are some

differences in their approaches, the complexity of a system to be modeled is an important

issue to study in the fields of conventional modeling. In statistical modeling, the choice of

an appropriate model, which intrinsically includes the choice of a class of potential models,

determination of the order of a model, and estimation of parameters of the model, is a

fundamental difficulty[4,26,31]. A general principle for addressing this problem, Occam’s

razor, states that an adequate but parsimonious model is preferable to others.

     In this sense, the introduction of Akaike’s Information Criterion, AIC[1], has called

our attention to the statistical model selection problem and triggered the development of

many statistical modeling techniques in various fields during the last two decades. This

criterion may be viewed as an asymptotically unbiased estimator of the expected Kullback-

Leibler information which is a measure of discrepancy between statistical models[19]. Thus,

selection of a model minimizing AIC means that the selected model may be the best

approximating model to the true model.

     Since Akaike’s influential paper, several approaches to model selection were

developed and are still being refined. As examples, (i) the Bayesian approach (e.g.,

Schwarz[23], Akaike[3], and Kashyap[18]), (ii) the cross-validation approach by Stone[30],

(iii) the prequential approach by Dawid[14], (iv) the criterion autoregressive transfer

function by Parzen[20], (v) Hannan and Quinn’s approach[15], (vi) the coding theoretic

approach by Rissanen[21], and (vii) informational complexity (ICOMP) criterion of

Bozdogan[8,9,10,11] are representative approaches. Some of these are briefly summarized

by Sclove[24,25] and Tong[33].

     The asymptotic behaviors of these model selection criteria have been extensively

analyzed by many researchers (e.g., Schwarz[23], Shibata[27,28] and Bozdogan and

Haughton[12]). For the data for which the true model has infinite order, AIC provides an

asymptotically efficient selection of a finite order model. However, for the data for which

the true model has finite order, minimizing AIC does not produce consistent model order

selection, which pursues the selection of the most parsimonious model. This defect is more

evident when the sample size is very large. In other words, the existing asymptotically

efficient criteria (e.g., AIC) which do not provide consistent order selection tend to overfit

unless the maximum allowable order of the model is specified. This overfitting problem

leads to more unsatisfactory model order selection when the sample size is small, or when

the number of free parameters is a relatively larger than the sample size. In this case, the

overfitting stems from the fact that AIC is strongly negatively biased. This bias is attributed
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to the deterioration in the accuracy of Taylor series expansions of the Kullback-Leibler

information used in the derivation of AIC by Hurvich[17].

     Shibata[27] has pointed out that AIC, unlike the consistent model selection criteria,

will not necessarily select the most parsimonious true model asymptotically (i.e., it has

tendency to overestimate the order). However, because any real problem generally has a

finite samples and any consistent criterion assumes that there exists true order of a model,

consistency may not be so attractive in some cases. On the contrary, if there exist certain

circumstances requiring avoidance of overfitting, consistent model selection needs to be

advocated.

     This background increases the necessity of introducing a consistent and bias corrected

model selection criterion. In this paper, we will obtain a consistent and bias corrected model

selection criterion by extending the methods proposed by Bozdogan[7] and Hurvich[17],

which are both extensions of Akaike’s Information Criterion, AIC. Since our work is

primarily based on Akaike’s AIC[1], Bozdogan’s CAICF[7] which is an extension of AIC,

and Hurvich’s AICc[17], we will label its consistent and bias corrected extension as AICbc

not to create any confusion on the part of the readers. These criteria are widely applicable to

data with small and/or large samples and to the cases where the number of free parameters is

a relatively larger than the sample size, and it still provides a consistent model order

selection. Furthermore, we will show the empirical performance of the proposed model

selection criterion to some other criteria by Monte Carlo experiments.

2. A consistent and bias corrected model selection criterion

     In the situation of statistical modeling based on a set of given observations, we

proceed under the assumption that these observations are the values of random variables

whose probability distributions are generally unknown. In this case, we assume a model in

the form of a probability distribution and estimate the true probability distribution using a

set of given observations. This estimation is to determine the number and values of

unknown parameters of the assumed model so that the model has good fitting ability to the

given data and good predictive ability. In this section, we derive a consistent and bias

corrected model selection criterion based on a measure of the distance between the model

and the true distribution, which is Boltzmann’s generalized entropy[5] or the Kullback-

Leibler information quantity[19].

     Suppose that independent random variables X1, . . . , Xn form random samples x1, . . . ,
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xn from a discrete or continuous distribution for which the probability density function is

f(x|θ), where the parameter vector θ = θθK=(θ 1 , θ 2 , . . . , θ K) belongs to some K-dimensional

parameter space Ω. In the following, we will assume that X1, . . . , Xn  are continuous

random variables. The probability density function f(x|θ) is a model with K parameters, i.e.,

MODEL(K) : f(x|θ), θ=θθK=(θ 1 , θ 2 , . . . , θ K).   (1)

Assume that a true parameter vector θ* of θ with its probability density function f(x|θ*) is

included in the K-dimensional parameter space Ω. A model defined by restricting the

parameter space with θ h=0 for all h > k is given by

MODEL(k) : f(x|θk), θ k ={(θ 1 , θ 2 , . . . , θ K) | θ h=0 for all h > k}.   (2)

    In the case, the statistical model identification may be carried out by selecting a

restricted model f(x|θk), where the θk is the closest to the true parameter vector θ*, based on

the given n observations. Thus, the derivation of a criterion which gives an optimal value of

k so as to minimize the average estimation error is needed in the problem of statistical

model identification. The estimation error comes from both the deterministic bias due to the

selection of a restricted model f(x|θk) and the random error due to the use of the maximum

likelihood estimator �θ
k

 of θk. Thus, minimization of the average estimation error can be

done by the appropriate compromise between the bias and the random error. Following

Akaike, we will use the entropy for the derivation of a criterion to minimize the average

estimation error[2].

     To develop this further, we will introduce the generalized entropy B of Boltzmann, or

the Kullback-Leibler information quantity I as an objective measure of the distance between

the model f(x|θ) and the true distribution f(x| θθ*) as:

     I B E{log f f( ; ) ( ; ) ( | ) log ( | )}* * *θ θ θ θ θ θ= − ≡ −X X

       = −∫ ∫f f d f f d( | ) log ( | ) ( | ) log ( | )* * *x x x x x xθ θ θ θ ,      (3)

where E denotes the expectation with respect to the true distribution f(x|θ*) and log means

natural logarithm. Following Bozdogan, we will minimize the Kullback-Leibler information

quantity I instead of maximizing the entropy B for the derivation of a criterion to minimize

the average estimation error. Since the first term in (3) is a constant, we only have to

estimate the second term (i.e., the expected log likelihood) in (3) with respect to θ.

Unfortunately it is not directly observable but can be consistently estimated from the

observed data.
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Proposition 1. The consistent and bias corrected extension of Akaike’s information

criterion(AIC), AICbc(k), is

[ ]
.
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Proof.  Hereafter, we follow the notation of Sakamoto[22] and Bozdogan[7]. Under the

assumption that a given data set is a realization of a random variable vector X of which

random variables are independent and identically distributed (i.i.d.), the likelihood function

for the set of data is given by

L f x x x f xn i
i

n

( ) ( , , , | ) ( | ).θ θ θ= =
=

∏1 2
1

�                              (5)

By taking the natural logarithm of the likelihood function L(θ), we have

�( ) log ( ) log ( | ),θ θ θ≡ =
=
∑L f xi
i

n

1

                                   (6)

the log likelihood function, � (θ). It can also be regarded as a random variable. By dividing

the log likelihood function � (θ) by the sample size n, we get

� �n i
i

n

n n
L

n
f x( ) ( ) log ( ) log ( | ),θ θ θ θ≡ = =

=
∑1 1 1

1

                      (7)

the mean log likelihood of the sample. From the efficiency of the maximum likelihood

estimator, we observe that the mean log likelihood in (7) is a natural estimator of the

expected log likelihood in (3). The expected mean log likelihood is given by

nE{ E{log L f f dn� ( )} ( )} ( | ) log ( | ) .*θ θ θ θ= = ∫ x x x                    (8)

Therefore, we have to minimize the expected mean log likelihood of the true model given

by

� �n kk E{* *( ) ( � )},≡ θθ                                               (9)

where � � �
* * * * *( ) ( )} ( )} log ( | )}.θ θ θ θ≡ = =

=
∑nE{ E{ E{ f xn i
i

n

1

      

Expanding � (θ) in (6) in a Taylor series about a maximum likelihood estimator �θ K  and

ignoring higher order terms, we obtain
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where θ θ θ θ θ θ− = − −� ( � ) ( � )K
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, T denotes the transpose of a vector (θ θ− �
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and J is the positive definite Fisher’s information matrix which is defined by
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From (10) and (12), we further get
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Using (10) and (13), we obtain
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J
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Similarly the Pythagorean theorem, we have

θ θ θ θ θ θ− = − + −* * * * .
J k J k J

2 2 2
                                 (15)

Expanding �* (θ) in a Taylor series about θ k
*  and ignoring higher order terms, we have

� �
* * * *( ) ( ) ,θ θ θ θ≅ − −k k J

n

2

2
                                     (16)

and
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Thus, from (14) and (17), we obtain
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Solving (18) for �* *( )θ k  , we get

   � � � �
* * * * * * * * *( ) ( � ) ( ) ( ) ( ) ( � ) � .θ θ θ θ θ θ θ θ θ θk k k K
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Thus, from (9) and (16), we have
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Thus, from (19) and (20), we get
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Ignoring the constant term �* *( )θ  in (21), we obtain
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Thus, from (22) and (23), we obtain

 (24)

     For sufficiently large n, since the maximum likelihood estimator �θ k  is
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� ( ,( ( )) ).* *θ θ θk k kN nJ→ −1                                         (25)

In this case, �( )*θ k  can be approximated as follows[7].

�( ) log ( ) log log ( � ) ( ),* /θ θk kh
k n

J n≅ + + + −x
2 2

1

2
1 2

π
O                 (26)

where h(x) is independent of a parameter vector θ.

     Here, we assume that the true parameter θ∗ is situated near θ k
*  and ignoring the

constant term log h(x) in (26), from (24) and (26), we obtain
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Now, multiplying both sides of (27) by -2, we obtain
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equation (28) becomes
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     To conclude the derivation, we consider the last term in (30), that is, 
2* ˆ
J

kkn θθ −

under the expectation. For sufficiently large n, Akaike approximated 
2

* ˆ
J

kkn θθ −  by a chi-

square distribution with k degrees of freedom under certain regularity conditions[1]. In this

paper, we derive a general form of its expectation, which includes Akaike’s approach as a

special case.

E{n E{ n J nk k
J

k k
T

k k
� } ( � ) ( � )}* * *θ θ θ θ θ θ− = − −

2

       [ ]= − + − −tr J n E{ n J E{ nk k k k
T

k k{ cov ( � ) } ( � ) } ( � )}.* * *θ θ θ θ θ θ (31)

For sufficiently large n, ( )*ˆ
kkn θθ − is asymptotically multivariate normal. That is,

n N J RJk k( � ) ~ ( , ),*θ θ− −0 1                                       (32)
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Fisher information matrix. Thus, from (31) and (32), we have

E{n tr J Rk k
J

� } ( ).*θ θ− ≅ −2
1                                        (33)

We note that tr J R( )−1  is the well known Lagrange-multiplier test statistic. See, for

example, Takeuchi[32] and Hosking[16]. In (33), if the order of R is k and J is equal to R,

which is not true in general, then tr J R( )−1  is equal to k, so that it will be the same as

Akaike’s result. Because θ k
*  is not directly observable, we use its maximum likelihood

estimator �θ k . Therefore, from (30) and (33), we get the extended consistent and bias

corrected model selection criterion AICbc(k) as:

     AIC k kbc n( ) ( )*≡ −2�

      [ ]≅ − + + + −2
2

2 1
�( � ) log log ( � ) ( � ) ( � ) .θ θ θ θk k k kk

n
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π
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It is worth to note that the first plus the last terms in (34) corresponds to the general

definition of Takeuchi’s information criterion (TIC), or sometimes also denoted by AICT.

For this, see, e.g., Shibata[29]. Therefore, AICbc(k) is a much more general criterion than

TIC.

     The computation of AICbc(k) represented in (34) in some cases is very cumbersome.

However, the new work of Bozdogan[9,10,11,12] gives us analytical way of computing the

inverse of the Fisher's information matrix. It is also reasonable to approximate (34) by a

simpler form for effective use, especially for small sample sizes. We achieve this by

expanding 
∂

∂
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θ θ
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The left-hand side of (35) is zero. Thus, (35) can be rewritten as



Soon H. Kwon*, M. Ueno**, and M. Sugeno***50

( � ) ( )

( )

( )

( )

( )

,* *
*

*

*

*

θ θ θ

θ
θ

θ
θ

θ θ
θ

θ

θ

k k k
k

T

k

P
P

P

k

k

− =















−

∂
∂

∂
∂ ∂

�

�
2

2

                          (36)

where P E Jk T k

k

2
2

( )
( )

( ).* *

*

θ
θ

θ θ
θ

θ

= −




















=
∂
∂ ∂
�

And we have

∂
∂ ∂

∂
∂ ∂ ∂

∂

2

2

2
� �( )

( | )

( | )
( )

.
*

*

*

θ
θ θ

θ
θ θ

θ
θ
θ

θ

θ

θ
T

T

k

k

k

f

f






 =

















− 





X

X                    (37)

Taking the expectation of both sides of (37), we obtain
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In (38), if the following is satisfied
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then, we get
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From (36) and (37), we obtain
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Thus, from (33) and (41), we get
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     The distribution of the numerator on the right of (42) becomes a χ2 distribution with k

degrees of freedom. The distribution of the denominator on the right of (42) also becomes a

χ2 distribution with (n-k) degrees of freedom and they are independent. Thus,

n k

k k k
J

− −θ θ* �
2

is approximately distributed as F(k, n - k). Here, considering only the term

in (42), we can see that Akaike’s result is a special case of our result. This is also supported

by the fact that for a large values of (n-k), if a random variable ν has an F(k, n-k)

distribution, then a good approximation of ν has a χ2(k) distribution[13]. Thus, taking the

expectation of (42), then (34) becomes

AIC k kbc n( ) ( )*≡ −2�

 ≅ − + + +
− −

2
2

2
2

�( � ) log log ( � ) .θ θk kk
n

J
nk

n kπ
            (43)

By (34) and (43), we get the whole proposition. Q.E.D.

     The first term in (43) is a measure of badness of fit when the parameters of the true
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model with an unknown number of parameters are approximated by the maximum

likelihood estimators of the k parameters of the assumed model. We can heuristically

interpret functions of the penalty terms in AICbc as follows. The second term in (43)

penalizes the overparametrization more strongly for small samples. Thus, the overfitting

problem of the asymptotically efficient model selection criteria for small samples will be

overcome. On the other hand, the third term penalizes the overparametrization more

strongly for large samples. In the same way, the overfitting problem of the asymptotically

efficient model selection criteria for large samples will be overcome. Here, if we retain the

first two terms, AICbc is similar to Hurvich’s criterion[17]. If we retain the first and the third

terms in (43), AICbc is similar to Schwarz’s criterion (SC).

     We further note that the fourth term tr J R( )−1  in (34) is important because it provides

information on the correctness of the assumed class of potential models as discussed in

White[34] and Bozdogan[7]. In general, a fundamental assumption underlying classical

model selection criteria is that the true model is known to lie within a specified class of

potential models (i.e., the class of potential models is assumed to be correctly specified).

However, in real circumstances, it is most frequently the case that we are not able to find

evidence that this assumption is true. The correct specification of the class is a sufficient,

but by no means a necessary condition[7].

     Thus, it is very natural to introduce a term in model selection criteria, which indicates

whether the assumed class of potential models is correctly specified or not. Following

White[34], see also Bozdogan[7], under conditions that the class of potential models is

correctly specified and that certain assumptions hold, the following information matrix

equivalence theorem can be obtained. Here, we quote the theorem without proof.

Theorem 1; If f(x) = f(x|θ*) for θ* in K-dimensional space ΩK , then θ θ* *= k  and

J Rk k( ) ( )* *θ θ=  , so that the covariance matrix C J Rk k k( ) ( ) ( )* * *θ θ θ= =− −1 1  ,

where  J E fk T

k
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θ θ

θ
θ

≡ −
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       and C J R Jk k k k( ) ( ) ( ) ( )* * * *θ θ θ θ≡ − − −1 1 1 is the covariance matrix.

     The information matrix equivalence theorem says that when the class of potential

models is correctly specified, the information matrix can be expressed in either Hessian

form, J k( )*θ  or outer product form R k( )*θ  (i.e., J Rk k( ) ( ) .* *θ θ− = 0  ). When this

equality fails, it follows that the class is misspecified. Thus, from Theorem 1, we can see

that we can judge whether the class of potential models are correctly specified or not by

testing the relationship between the consistent estimators J k( � )θ  and R k( � )θ  of

J k( )*θ and R k( )*θ  respectively, which are not directly observable. If the estimated

information matrix J k( � )θ  is singular or near singular, then the Kullback-Leibler

information quantity has no unique minimum at the true parameter vector. Therefore it is

preferable to compute J k( � )θ , if possible, and proceed to choose the model order.

     Kashyap has obtained a similar result (i.e., log ( � )B kθ  ) in his criterion, which took a

Bayesian approach, by expanding and approximating the logarithm of the posterior

probability in a Taylor series[18]. B k( � )θ , which is the negative of the matrix of second

partials of logL(θk), is finite and asymptotically positive definite and is Fisher’s information

matrix. Another similar result was obtained by Bozdogan[7] given by

CAICF k k n Jk k( ) ( � ) (log ) log ( � ) .= − + + +2 2� θ θ                     (44)

CAICF(k) which is a consistent extension of AIC penalizes the overparametrizations more

strongly, in particular, for large samples. But it does not have a term correcting the bias for

small samples. Thus, we can see the difference between the AICbc given in (43) with that of

Bozdogan’s CAICF. We note that as n → ∞ , the term 
2

2
2

n

n k− −
→ , and AICbc reduces

to CAICF in (44) since the term −k log( )2π can be neglected. However, it is worth to note

that the term −k log( )2π  dropped in the derivation of Bozdogan[7] cannot be dropped

when the sample size is small.

     In the following, we will show this by a more explicit analytical formulation. To state

our results, we need the following assumption.
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(A1) The parametric probability distribution of the model is correct (i.e., the estimated

Fisher information matrix J is nonsingular).

(Consistency of AICbc) Suppose (A1) holds. Then, the model selection criterion AICbc is

strongly consistent. That is,          

k k as n→ → ∞* ,                                               (45)

where k* is the true order of the model.

   We will prove the consistency of AICbc in the following: Since the arguments for the

underfitting and the overfitting cases are different, we will consider them separately.

   (1) Overfitting case. We consider what happens to the probability of choosing an order

ko > k*. The third term in (43) is of O(1) and is negligible in comparison with other terms if

n is very large. Thus,

  P AIC k AIC kbc
o

bc{ ( ) ( )}*<

[ ]= − > −
− −

− −
− −

+ −
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( ) log*
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*
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π

    → > ∞ → ∞−P as n
k ko{ }*χ2

= 0.                    (46)

   (2) Underfitting case. We consider what happens to the probability of choosing an order

ku < k*. In the same way, the fourth term in (43) is of O(1) and is negligible in comparison

with other terms if n is very large. Thus,

   P AIC k AIC kbc
u

bc{ ( ) ( )}*<

[ ]= − > −
− −

− −
− −

+ −
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( ) log*
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π

   → > ∞ → ∞−P as n
k ku{ }*χ2

= 0.                         (47)

Then, from (46) and (47), the consistency of AICbc is proved.

3. A numerical example
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     In this section, to investigate the empirical performance of the AICbc and compare its

performance with those of various model selection criteria, we provide a result of Monte

Carlo study. For simplicity, we will consider a regression problem and assume that the true

model and the approximating model are linear and given by

y xj
j

k

j= +
=
∑θ ε

1

,                                                  (48)

where it is assumed that ε is independent and identically distributed (i.i.d.) normal. We

assume that the approximating family includes the true model, that is, the degree of the

regression model in (48) (i.e., k) is less than or equal to a given K, which is an assumption

universally accepted for such model selection problems. In our Monte Carlo study, 100

realizations were generated from the following model:

y x x x N= + + +1 2 3
22 3 0ε ε σ~ ( , ) .                              (49)

     Seven candidate variables stored in an n × 7  matrix X of independent identically

distributed normal random variables were considered. All the values of normal pseudo-

random numbers of (49) were generated on a SPARC server 1000 using Box and

Muller�� [6] method, which generates normal pseudo-random numbers from uniform pseudo-

random numbers. The candidate models included the columns of X in a sequentially nested

fashion; i.e. the candidate model of dimension k consisted of columns 1, . . . ,k of X. To

compare the performances of the AICbc and the other criteria, we varied sample sizes ( i.e., n

= 10,  n = 20,  n = 100, and n = 500). 100 realizations for each sample size were generated.

For each realization, we studied the relative performances of AIC, AICc, BIC, CAIC,

CAICF, and AICbc as follow:

AIC[1] given by

AIC k kk( ) ( � ) ,= − +2 2� θ                                         (50)

BIC[23] given by

BIC k k nk( ) ( � ) log ,= − +2� θ                                      (51)

the bias-corrected AIC, AICc [17] given by

AIC k
n n k

n kc k( ) ( � )
( )

,= − + + −
− −

2
1

1

2

� θ                               (52)

CAIC[7] given by

CAIC k k nk( ) ( � ) (log ),= − + +2 1� θ                                 (53)
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and CAICF[7] given by (44).

     For each sample size, the results of the Monte Carlo study are given in Table 1. In

Table 1, numbers under each selected model order represent frequencies of that model order

selected by each criterion among 100 realizations for each sample size.
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Table 1

Frequency of model order selected by various criteria in 100 realizations of the Monte Carlo

study for varying sample sizes n (σ2 = 1)

Experiment Criterion Selected model order

  1  2  3*  4  5  6    7

Proportion of

Overfitting  Underfitting

n = 10 AIC

AICc

BIC

CAIC

CAICF

AICbc

  0  0  29  5  5  15  46

  0  0  98  2  0   0   0

  0  0  34  5  5  15  41

  0  0  53  4  7  11  25

  0  0  74  4  4   7  11

  0  0  99  1  0   0   0

   0.71         0

   0.02         0

   0.66         0

   0.47         0

   0.26         0

   0.01         0

n = 20 AIC

AICc

BIC

CAIC

CAICF

AICbc

  0  0  50  20  7  7  16

  0  0  84  11  4  0   1

  0  0  72  16  3  1   8

  0  0  84  8   2  1   5

  0  0  94  4   1  0   1

  0  0  94  5   1  0   0

   0.50         0

   0.16         0

   0.28         0

   0.16         0

   0.06         0

   0.06         0

n = 100 AIC

AICc

BIC

CAIC

CAICF

AICbc

  0  0  47  2  17  13 21

  0  0  60  2  17   9 12

  0  0  90  2   5   0  3

  0  0  94  1   3   0  2

  0  0  98  1   1   0  0

  0  0  93  1   4   0  2

   0.53         0

   0.40         0

   0.02         0

   0.06         0

   0.02         0

   0.07         0

n = 500 AIC

AICc

BIC

CAIC

CAICF

AICbc

  0  0  76  6  14   2  2

  0  0  77  5  14   2  2

  0  0  99  1   0   0  0

  0  0 100  0   0   0  0

  0  0 100  0   0   0  0

  0  0 100  0   0   0  0

   0.24         0

   0.23         0

   0.01         0

   0            0

   0            0

   0            0

     From the results for small samples (n= 10 and 20) in Table 1, we see that the criteria

other than AICbc and AICc show poor performances and have a tendency to overfit the
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model. On the other hand, the results show that AICbc and AICc have very good

performances. These support our belief that the fourth term in (43) penalizes the

overparametrization more strongly for small samples. For large samples (n=100 and 500),

AICbc, BIC, CAIC and CAICF show consistent model order selection as we previously

discussed, but AIC and AICc do not. Thus, we can conclude that AICbc has better

performance to the other criteria studied in this paper across almost all sample sizes, and

provides consistency of order selection.

4. Conclusion

     In this paper, we proposed a consistent and bias corrected model selection criterion

(AICbc) shown in (4), which is a consistent and bias corrected extension of Akaike’s

information criterion, AIC. We investigated the asymptotic properties of this criterion and

showed that AICbc provided a consistent model order selection. Empirical performances of

AICbc over small and large sample sizes showed better order choices of a linear regression

model using Monte Carlo experiments than other criteria including AIC, BIC and some

modified versions of these.

     It is a well-known fact that we should use consistent criteria to avoid overfitting a

model and use AIC to avoid underfitting a model. However, the probability of overfitting

and underfitting a model by the use of AICbc  was very small over the wide range of sample

sizes. From this, we conclude that it can play an important role in model selection problems.

References

[1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Auto.

   Cont. 19, 716-723.

[2] Akaike, H. (1977). On entropy maximization principle. In P. R. Krishnaiah (Ed.), Proc.

   of the Symposium on Applications of Statistics, 27-47, Amsterdam : North-Holland.

[3] Akaike, H. (1979). A Bayesian extension of the minimum AIC procedure of

   autoregressive model fitting. Biometrika, 66, 237-242.

[4] Anderson, T. W. (1984). An introduction to multivariate statistical analysis, 2nd edition,

   New York: John Wiley & Sons.

[5] Boltzmann, L. (1877). Uber die Beziehung zwiscen dem zweiten Hauptsatz der

   mechanischen Warmetheorie und der Wahrscheinlichkeitrechung respective den Satzen



A Consistent and Bias Corrected Extension of Akaike’s Information 59

   uber das Warmegleichgewicht. Winer Berichte, 76, 373-435.

[6] Box, G.E.P. and Muller M.E. (1958). A Note on the Generation of Random Normal

   Deviates. Ann. Math. Stat., 29, 610-611.

[7] Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The

   general theory and its analytical extensions. Psychometrika, 52, 345-370.

[8] Bozdogan, H. (1988). ICOMP: A New Model-Selection Criterion. In Classification and

   Related Methods of Data Analysis, Ed. Hans H. Bock, Amsterdam: Elsevier Science

   Publishers B.V. (North-Holland), 599-608.

[9] Bozdogan, H. (1990). On the information-Based Measure of Covariance Complexity and

   its Application to the Evaluation of Multivariate Linear Models, Communications in

   Statistics, Theory and Methods, A19, No. 1, 221-278.

[10] Bozdogan, H. (1994a). Choosing the number of clusters, subset selection of variables,

    and outlier detection in the standard mixture-model cluster analysis. In new approaches

    in classification and data analysis, E. Diday, Y. Lechevalier, M. Shader, P. Bertrand,

    and B. Burtschy (Ed.), Berlin, Springer-Verlag, 169-177.

[11] Bozdogan, H. (1994b).Mixture-model cluster analysis using a new informational       

    complexity and model selection criteria. In Multivariate Statistical Modeling, 2, Proc.     

    of the first US/Japan conference on the frontiers of statistical modeling : An

    informational approach, May 24-29, The University of Tennessee, Knoxville, TN     

    37996, USA. H. Bozdogan (ed.), Kluwer Academic Publishers, the Netherlands,     

    Dordrecht, 69-113.

[12] Bozdogan, H. and Haughton, D.(1995). Informational complexity criteria for regression

    models. Invited paper for Statistica Sinica to appear in a special issue on Statistical

    Model Selection.

[13] Davis, M. H. A. and Vintor, R. B. (1985). Stochastic modeling and control, New York:

   Chapman and Hall.

[14] Dawid, A. P. (1984). Statistical theory: the prequential approach. J. R. Stat. Soc., A147,

    278-292.

[15] Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an

    autoregression. J. R. Stat. Soc., B 41, 190-195.

[16] Hosking, J.R.M. (1980). Lagrange-multiplier tests of time-series models. J.R. Stat. Soc.

    B42, 170-181.

[17] Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in

    small samples. Biometrika, 76,  297-307.



Soon H. Kwon*, M. Ueno**, and M. Sugeno***60

[18] Kashyap, R. L. (1982). Optimal choice of AR and MA parts in autoregressive moving

    average models. IEEE Tr. on Pattern Analysis and Machine Intelligence 4, 99-104.

[19] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Annals of

    Mathematical Statistics, 22, 79-86.

[20] Parzen, E. (1974). Some recent advances in time series modelling. IEEE Trans. Auto.

    Cont., 19, 723-729.

[21] Rissanen, J. (1983). A universal prior for integers and estimation by minimum

    description length. Annals of Statistics, 11, 416-431.

[22] Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986). Akaike Information Criterion

    Statistics. KTK Scientific Publishers, Tokyo.

[23] Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-

    464.

[24] Sclove, S. L. (1987). Application of model-selection criteria to some problems in

    multivariate analysis. Psychometrika, 52, 333-343.

[25] Sclove, S. L. (1994). Some aspects of model-selection criteria. In Multivariate

   Statistical Modeling, Vol. 2, Proc. of the First US/Japan Conference on the Frontiers of

   Statistical Modeling: An Informational Approach, H. Bozdogan (ed.), Kluwer Academic

   Publishers, The Netherlands, Dordrecht, 37-67.

[26] Searle, S. R. (1982). Matrix algebra useful for statistics, New York: John Wiley & Sons.

[27] Shibata, R. (1980). Asymptotically efficient selection of the order of the model for

   estimating parameters of a linear process. Annals of Statistics, 8, 147-164.

[28] Shibata, R. (1981). An optimal selection of regression variables. Biometrika, 68, 45-54.

[29] Shibata, R. (1989). Statistical Aspects of Model Selection. In From Data to Modeling,

   J.C. Willems (Ed.), Berlin, Springer-Verlag, 216-240.

[30] Stone, M. (1979). Cross-validatory choice and assessment of statistical predictions

   (with discussions). J. R. Stat. Soc., B36, 111-147.

[31] Stuart, A. and Ord, J. K. (1991). Kendall’s advanced theory of statistics, vol. 2, Fifth

   edition, London: Edward Arnold.

[32] Takeuchi, K. (1976)  Distribution of information Statistics and a Criterion of Model

   Fitting. Surikagaku (Mathematical Sciences), Vol. 153, 12-18. (in Japanese).

[33] Tong, H. (1989). Nonlinear Time Series Analysis. Oxford Univ. Press.

[34] White, H. (1982). Maximum likelihood estimation of misspecified models,

   Econometrica, 50, 1-25.


