• Title/Summary/Keyword: AI-based

Search Result 2,876, Processing Time 0.026 seconds

AI-Enabled Business Models and Innovations: A Systematic Literature Review

  • Taoer Yang;Aqsa;Rafaqat Kazmi;Karthik Rajashekaran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1518-1539
    • /
    • 2024
  • Artificial intelligence-enabled business models aim to improve decision-making, operational efficiency, innovation, and productivity. The presented systematic literature review is conducted to highlight elucidating the utilization of artificial intelligence (AI) methods and techniques within AI-enabled businesses, the significance and functions of AI-enabled organizational models and frameworks, and the design parameters employed in academic research studies within the AI-enabled business domain. We reviewed 39 empirical studies that were published between 2010 and 2023. The studies that were chosen are classified based on the artificial intelligence business technique, empirical research design, and SLR search protocol criteria. According to the findings, machine learning and artificial intelligence were reported as popular methods used for business process modelling in 19% of the studies. Healthcare was the most experimented business domain used for empirical evaluation in 28% of the primary research. The most common reason for using artificial intelligence in businesses was to improve business intelligence. 51% of main studies claimed to have been carried out as experiments. 53% of the research followed experimental guidelines and were repeatable. For the design of business process modelling, eighteen AI mythology were discovered, as well as seven types of AI modelling goals and principles for organisations. For AI-enabled business models, safety, security, and privacy are key concerns in society. The growth of AI is influencing novel forms of business.

The Effects of Brand Repuration and Social Comparison on Consumers' Brand Attitude and Purchase Intention of a Product Recommended by AI (브랜드 명성과 사회비교경향성이 AI 추천 제품의 브랜드 태도 및 구매의도 미치는 영향연구)

  • Sungmi Lee
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • The purpose of this research is to investigate consumer responses to production recommendations by AI. In order to test hypotheses of this study, we conducted experimental study that was a 2(Brand reputation: high vs. low) X 2(Social comparison: high vs. low). The results of this study showed the interaction effects of brand reputation and social comparison on brand attitude. Based on the results, we provide theoretical implications to extent the existing research regarding product recommendations. Moreover, the results of this study provide some practical implications and a new aspect about AI recommendations.

A Study on the Utilization of Generative AI for Employment Portfolio Creation (취업 포트폴리오 제작을 위한 생성형 AI 활용 연구)

  • Kim Sungrim;Kwon Joonhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.3
    • /
    • pp.1-12
    • /
    • 2024
  • This study explores how generative AI technology can be utilized to create more efficient and effective employment portfolios in the rapidly changing job market and recruitment landscape. To achieve this, the study first conducted an in-depth analysis of recent employment trends and recruitment patterns, categorizing various generative AI tools based on their application in areas such as resume writing, portfolio design, and video production. Particularly, this research includes a case study of a career planning course in a university setting, where generative AI was applied, to empirically evaluate its potential for educational use. Through this case study, the research thoroughly examines how generative AI can contribute to efficient job preparation and skill enhancement for job seekers. The findings suggest that generative AI plays a critical role in providing personalized information, generating creative ideas, and enhancing both the visual and functional quality of employment portfolios, ultimately contributing to increased competitiveness in the job market. The study also emphasizes the need for further research on the expanding scope and effectiveness of generative AI as the technology continues to evolve.

Applying NIST AI Risk Management Framework: Case Study on NTIS Database Analysis Using MAP, MEASURE, MANAGE Approaches (NIST AI 위험 관리 프레임워크 적용: NTIS 데이터베이스 분석의 MAP, MEASURE, MANAGE 접근 사례 연구)

  • Jung Sun Lim;Seoung Hun, Bae;Taehoon Kwon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.21-29
    • /
    • 2024
  • Fueled by international efforts towards AI standardization, including those by the European Commission, the United States, and international organizations, this study introduces a AI-driven framework for analyzing advancements in drone technology. Utilizing project data retrieved from the NTIS DB via the "drone" keyword, the framework employs a diverse toolkit of supervised learning methods (Keras MLP, XGboost, LightGBM, and CatBoost) enhanced by BERTopic (natural language analysis tool). This multifaceted approach ensures both comprehensive data quality evaluation and in-depth structural analysis of documents. Furthermore, a 6T-based classification method refines non-applicable data for year-on-year AI analysis, demonstrably improving accuracy as measured by accuracy metric. Utilizing AI's power, including GPT-4, this research unveils year-on-year trends in emerging keywords and employs them to generate detailed summaries, enabling efficient processing of large text datasets and offering an AI analysis system applicable to policy domains. Notably, this study not only advances methodologies aligned with AI Act standards but also lays the groundwork for responsible AI implementation through analysis of government research and development investments.

Survey on Value Elements Provided by Artificial Intelligence and Their Eligibility for Insurance Coverage With an Emphasis on Patient-Centered Outcomes

  • Hoyol Jhang;So Jin Park;Ah-Ram Sul;Hye Young Jang;Seong Ho Park
    • Korean Journal of Radiology
    • /
    • v.25 no.5
    • /
    • pp.414-425
    • /
    • 2024
  • Objective: This study aims to explore the opinions on the insurance coverage of artificial intelligence (AI), as categorized based on the distinct value elements offered by AI, with a specific focus on patient-centered outcomes (PCOs). PCOs are distinguished from traditional clinical outcomes and focus on patient-reported experiences and values such as quality of life, functionality, well-being, physical or emotional status, and convenience. Materials and Methods: We classified the value elements provided by AI into four dimensions: clinical outcomes, economic aspects, organizational aspects, and non-clinical PCOs. The survey comprised three sections: 1) experiences with PCOs in evaluating AI, 2) opinions on the coverage of AI by the National Health Insurance of the Republic of Korea when AI demonstrated benefits across the four value elements, and 3) respondent characteristics. The opinions regarding AI insurance coverage were assessed dichotomously and semi-quantitatively: non-approval (0) vs. approval (on a 1-10 weight scale, with 10 indicating the strongest approval). The survey was conducted from July 4 to 26, 2023, using a web-based method. Responses to PCOs and other value elements were compared. Results: Among 200 respondents, 44 (22%) were patients/patient representatives, 64 (32%) were industry/developers, 60 (30%) were medical practitioners/doctors, and 32 (16%) were government health personnel. The level of experience with PCOs regarding AI was low, with only 7% (14/200) having direct experience and 10% (20/200) having any experience (either direct or indirect). The approval rate for insurance coverage for PCOs was 74% (148/200), significantly lower than the corresponding rates for other value elements (82.5%-93.5%; P ≤ 0.034). The approval strength was significantly lower for PCOs, with a mean weight ± standard deviation of 5.1 ± 3.5, compared to other value elements (P ≤ 0.036). Conclusion: There is currently limited demand for insurance coverage for AI that demonstrates benefits in terms of non-clinical PCOs.

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.

Development of the Contents of AI Convergence Education Method Subjects and Verification of Teaching Efficacy Effectiveness for Elementary and Secondary Teachers

  • Kim, Jeong-Rang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.217-223
    • /
    • 2022
  • In this paper, the needs and environment of the 'AI Convergence Education Method' were analyzed for elementary and secondary teachers, and based on this, teaching efficacy of informatics education was verified. For the research, elementary and secondary teachers who take the subject were selected, and based on the results of analyzing the general characteristics, pre-knowledge level, and needs of the subject, curriculum for 15 weeks was developed. As a result of verifying the teaching efficacy effectiveness of the developed 'AI Convergence Education Method' subject for 15 weeks, the effectiveness of the information education teaching efficacy was verified. Among the factors, there were statistically significant differences in information teaching values and information teaching strategies. In the future, it is necessary to conduct follow-up research to secure teachers' professionalism, such as linking with schools and convergence with other subjects. Various teaching and learning materials and teaching and learning methods such as educational contents and materials, reference literature, and artificial intelligence education platforms need to be prepared.

Current Status of Development and Practice of Artificial Intelligence Solutions for Digital Transformation of Fashion Manufacturers (패션 제조 기업의 디지털 트랜스포메이션을 위한 인공지능 솔루션 개발 및 활용 현황)

  • Kim, Ha Youn;Choi, Woojin;Lee, Yuri;Jang, Seyoon
    • Journal of Fashion Business
    • /
    • v.26 no.2
    • /
    • pp.28-47
    • /
    • 2022
  • Rapid development of information and communication technology is leading the digital transformation (hereinafter, DT) of various industries. At this point in rapid online transition, fashion manufacturers operating offline-oriented businesses have become highly interested in DT and artificial intelligence (hereinafter AI), which leads DT. The purpose of this study is to examine the development status and application case of AI-based digital technology developed for the fashion industry, and to examine the DT stage and AI application status of domestic fashion manufacturers. Hence, in-depth interviews were conducted with five domestic IT companies developing AI technology for the fashion industry and six domestic fashion manufacturers applying AI technology. After analyzing interviews, study results were as follows: The seven major AI technologies leading the DT of the fashion industry were fashion image recognition, trend analysis, prediction & visualization, automated fashion design generation, demand forecast & optimizing inventory, optimizing logistics, curation, and ad-tech. It was found that domestic fashion manufacturers were striving for innovative changes through DT although the DT stage varied from company to company. This study is of academic significance as it organized technologies specialized in fashion business by analyzing AI-based digitization element technologies that lead DT in the fashion industry. It is also expected to serve as basic study when DT and AI technology development are applied to the fashion field so that traditional domestic fashion manufacturers showing low growth can rise again.

Development of Convergence Educational Program Using AI Platform: Focusing on Environmental Education for Grades 5-6 (인공지능 플랫폼을 활용한 융합수업안 개발 : 5-6학년 환경교육을 중심으로)

  • Choi, Heyoungyun;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.213-221
    • /
    • 2021
  • With the advent of the 4th industrial revolution, the need for artificial intelligence education has increased. The online learning environment caused by COVID-19 made it possible to use variety of artificial intelligence platforms. In this study, an aritificial intelligence class plan was developed and proposed to achieve the goal of artificial intelligence education using an AI platform. The AI platform used is AI for Oceans, With the theme of creating a program for the environment, designed a 6-hour project class using Novel Engineering-based on STEAM model. Students experience AI for Oceans enough time and learn supervised learning by experience. Based on understanding of supervised learning, students design their own programs for the environment using Entry's AI blocks. In this study, for AI convergence education, this lesson was developed and presented with the goal of acquiring the creative problem solving ability and integrated thinking ability by using the principles of artificial intelligence to solve problems.

  • PDF

Detecting Foreign Objects in Chest X-Ray Images using Artificial Intelligence (인공 지능을 이용한 흉부 엑스레이 이미지에서의 이물질 검출)

  • Chang-Hwa Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.873-879
    • /
    • 2023
  • This study explored the use of artificial intelligence(AI) to detect foreign bodies in chest X-ray images. Medical imaging, especially chest X-rays, plays a crucial role in diagnosing diseases such as pneumonia and lung cancer. With the increase in imaging tests, AI has become an important tool for efficient and fast diagnosis. However, images can contain foreign objects, including everyday jewelry like buttons and bra wires, which can interfere with accurate readings. In this study, we developed an AI algorithm that accurately identifies these foreign objects and processed the National Institutes of Health chest X-ray dataset based on the YOLOv8 model. The results showed high detection performance with accuracy, precision, recall, and F1-score all close to 0.91. Despite the excellent performance of AI, the study solved the problem that foreign objects in the image can distort the reading results, emphasizing the innovative role of AI in radiology and its reliability based on accuracy, which is essential for clinical implementation.