• 제목/요약/키워드: AI training data

검색결과 286건 처리시간 0.031초

순환 적대적 생성 신경망을 이용한 안면 교체를 위한 새로운 이미지 처리 기법 (A New Image Processing Scheme For Face Swapping Using CycleGAN)

  • 반태원
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1305-1311
    • /
    • 2022
  • 최근 모바일 단말기 및 개인형 컴퓨터의 비약적인 발전과 신경망 기술의 등장으로 영상을 활용한 실시간 안면 교체가 가능해졌다. 특히, 순환 적대적 생성 신경망은 상호 연관성이 없는 이미지 데이터를 활용한 안면 교체가 가능하게 만들었다. 본 논문에서는 적은 학습 데이터와 시간으로 안면 교체의 품질을 높일 수 있는 입력 데이터 처리 기법을 제안한다. 제안 방식은 사전에 학습된 신경망을 통해서 추출된 안면의 특이점 정보와 안면의 구조와 표정에 영향을 미치는 주요 이미지 정보를 결합함으로써 안면 표정과 구조를 보존하면서 이미지 품질을 향상시킬 수 있다. 인공지능 기반의 무참조 품질 메트릭 중의 하나인 blind/referenceless image spatial quality evaluator (BRISQUE) 점수를 활용하여 제안 방식의 성능을 정량적으로 분석하고 기존 방식과 비교한다. 성능 분석 결과에 따르면 제안 방식은 기존 방식 대비 약 4.6%~14.6% 개선된 BRISQUE 점수를 나타내었다.

Quantitative Analysis for Win/Loss Prediction of 'League of Legends' Utilizing the Deep Neural Network System through Big Data

  • No, Si-Jae;Moon, Yoo-Jin;Hwang, Young-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.213-221
    • /
    • 2021
  • 이 논문은 League of Legends (LOL) 게임의 승패를 예측하기 위하여 Deep Neural Network Model 시스템을 제안한다. 이 모델은 다양한 LOL 빅데이터를 활용하여 TensorFlow 의 Keras에 의하여 설계하였다. 연구 방법으로 한국 서버의 챌린저 리그에서 행해진 약 26000 경기 데이터 셋을 분석하여, 경기 도중 데이터를 수집하여 그 중에서 드래곤 처치 수, 챔피언 레벨, 정령, 타워 처치 수가 게임 결과에 유의미한 영향을 끼치는 것을 확인하였다. 이 모델은 Sigmoid, ReLu 와 Logcosh 함수를 사용했을 때 더 높은 정확도를 얻을 수 있었다. 실제 LOL의 프로 게임 16경기를 예측한 결과 93.75%의 정확도를 도출했다. 게임 평균시간이 34분인 것을 고려하였을 때, 게임 중반 15분 정도에 게임의 승패를 예측할 수 있음이 증명되었다. 본 논문에서 설계한 이 프로그램은 전 세계 E-sports 프로리그의 활성화, 승패예측과 프로팀의 유용한 훈련지표로 활용 가능하다고 사료된다.

POI 에서 딥러닝을 이용한 개인정보 보호 추천 시스템 (Personal Information Protection Recommendation System using Deep Learning in POI)

  • 펭소니;박두순;김대영;양예선;이혜정;싯소포호트
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.377-379
    • /
    • 2022
  • POI refers to the point of Interest in Location-Based Social Networks (LBSNs). With the rapid development of mobile devices, GPS, and the Web (web2.0 and 3.0), LBSNs have attracted many users to share their information, physical location (real-time location), and interesting places. The tremendous demand of the user in LBSNs leads the recommendation systems (RSs) to become more widespread attention. Recommendation systems assist users in discovering interesting local attractions or facilities and help social network service (SNS) providers based on user locations. Therefore, it plays a vital role in LBSNs, namely POI recommendation system. In the machine learning model, most of the training data are stored in the centralized data storage, so information that belongs to the user will store in the centralized storage, and users may face privacy issues. Moreover, sharing the information may have safety concerns because of uploading or sharing their real-time location with others through social network media. According to the privacy concern issue, the paper proposes a recommendation model to prevent user privacy and eliminate traditional RS problems such as cold-start and data sparsity.

품질이 관리된 스트레스 측정용 테이터셋 구축을 위한 제언 (Recommendations for the Construction of a Quslity-Controlled Stress Measurement Dataset)

  • 김태훈;나인섭
    • 스마트미디어저널
    • /
    • 제13권2호
    • /
    • pp.44-51
    • /
    • 2024
  • 스트레스 측정용 데이터셋의 구축은 건강, 의료분야, 심리향동, 교육분야 등 현대의 다양한 응용 분야에서 핵심적인 역할을 수행하교 있다. 특히, 스트레스 측정용 인공지능 모델의 효율적인 훈련을 위해서는 다양한 편향성을 제거하고 품질 관리된 데이터셋을 구축하는 것이 중요하다. 본 논문에서는 다양한 편향성 제거를 통한 품질의 관리된 스트레스 측정용 데이터셋 구축에 관하여 제안하였다. 이를 위해 스트레스 정의 및 측정도구 소개, 스트레스 인공지능 데이터 셋 구축과정, 품질향상을 위한 편향성 극복 전략 그리고 스트레스 데이터 수집시 고려사항을 제시하였다. 특히, 데이터셋 품질을 관리하기 위해 데이터셋 구축시 고려사항과, 발생할 수 있는 선택편향, 측정편향, 인과관계편향, 확증편향, 인공지능편향과 같은 다양한 편향서에 대해 검토하였다. 본 논문을 통해 스트레스 데이터 수집시 고려사항과 스트레스 데이터셋의 구축에서 발생할 수 있는 다양한 편향성을 체계적으로 이해하고, 이를 극복하여 품질이 보장된 데이터셋을 구축하는데 기여할 것으로 기대된다.

Deep Learning-Enabled Detection of Pneumoperitoneum in Supine and Erect Abdominal Radiography: Modeling Using Transfer Learning and Semi-Supervised Learning

  • Sangjoon Park;Jong Chul Ye;Eun Sun Lee;Gyeongme Cho;Jin Woo Yoon;Joo Hyeok Choi;Ijin Joo;Yoon Jin Lee
    • Korean Journal of Radiology
    • /
    • 제24권6호
    • /
    • pp.541-552
    • /
    • 2023
  • Objective: Detection of pneumoperitoneum using abdominal radiography, particularly in the supine position, is often challenging. This study aimed to develop and externally validate a deep learning model for the detection of pneumoperitoneum using supine and erect abdominal radiography. Materials and Methods: A model that can utilize "pneumoperitoneum" and "non-pneumoperitoneum" classes was developed through knowledge distillation. To train the proposed model with limited training data and weak labels, it was trained using a recently proposed semi-supervised learning method called distillation for self-supervised and self-train learning (DISTL), which leverages the Vision Transformer. The proposed model was first pre-trained with chest radiographs to utilize common knowledge between modalities, fine-tuned, and self-trained on labeled and unlabeled abdominal radiographs. The proposed model was trained using data from supine and erect abdominal radiographs. In total, 191212 chest radiographs (CheXpert data) were used for pre-training, and 5518 labeled and 16671 unlabeled abdominal radiographs were used for fine-tuning and self-supervised learning, respectively. The proposed model was internally validated on 389 abdominal radiographs and externally validated on 475 and 798 abdominal radiographs from the two institutions. We evaluated the performance in diagnosing pneumoperitoneum using the area under the receiver operating characteristic curve (AUC) and compared it with that of radiologists. Results: In the internal validation, the proposed model had an AUC, sensitivity, and specificity of 0.881, 85.4%, and 73.3% and 0.968, 91.1, and 95.0 for supine and erect positions, respectively. In the external validation at the two institutions, the AUCs were 0.835 and 0.852 for the supine position and 0.909 and 0.944 for the erect position. In the reader study, the readers' performances improved with the assistance of the proposed model. Conclusion: The proposed model trained with the DISTL method can accurately detect pneumoperitoneum on abdominal radiography in both the supine and erect positions.

머신러닝 플랫폼을 활용한 소프트웨어 교수-학습 모형 개발 (The Development of Software Teaching-Learning Model based on Machine Learning Platform)

  • 박대륜;안중민;장준혁;유원진;김우열;배영권;유인환
    • 정보교육학회논문지
    • /
    • 제24권1호
    • /
    • pp.49-57
    • /
    • 2020
  • 현대사회는 21세기 초반 지식정보사회를 지나 지능정보사회로 바뀌어 가고 있다. 본 연구에서는 지능정보사회에서 요구되는 학습자의 핵심역량을 신장시키기 위하여 인공지능의 한 분야인 머신러닝을 기반으로 소프트웨어 교육 교수-학습 모형을 개발하였다. 본 모형은 인공지능 자체에 대한 학습의 부담감을 줄이고, 머신러닝을 활용하여 문제를 해결하는 과정에서 핵심역량을 신장시키는 것에 중점을 두었다. 개발된 모형의 구체적인 단계는 문제인식 및 분석, 데이터 수집, 데이터 가공 및 선별, ML모델 훈련 및 평가, ML프로그래밍, 적용 및 해결, 공유 및 환류의 7단계로 구성되어 있다. 본 연구에서 개발한 모형을 학생과 학부모를 대상으로 적용한 결과 긍정적인 반응을 얻을 수 있었으며, 이를 통해 머신러닝 기반의 소프트웨어 교육 프로그램의 개발 및 운영에 작은 밑거름을 제시할 수 있을 것으로 기대한다.

인공지능 기반 평가 도구를 이용한 한의사의 체질 진단 평가 및 활용 방안에 대한 연구 (Research on the Evaluation and Utilization of Constitutional Diagnosis by Korean Doctors using AI-based Evaluation Tool)

  • 박무순;황민우;이정윤;김창업;권영규
    • 동의생리병리학회지
    • /
    • 제36권2호
    • /
    • pp.73-78
    • /
    • 2022
  • Since Traditional Korean medicine (TKM) doctors use various knowledge systems during treatment, diagnosis results may differ for each TKM doctor. However, it is difficult to explain all the reasons for the diagnosis because TKM doctors use both explicit and implicit knowledge. In this study, an upgraded random forest (RF)-based evaluation tool was proposed to extract clinical knowledge of TKM doctors. Also, it was confirmed to what extent the professor's clinical knowledge was delivered to the trainees by using the evaluation tool. The data used to construct the evaluation tool were targeted at 106 people who visited the Sasang Constitutional Department at Kyung Hee University Korean Medicine Hospital at Gangdong. For explicit knowledge extraction, four TKM doctors were asked to express the importance of symptoms as scores. In addition, for implicit knowledge extraction, importance score was confirmed in the RF model that learned the patient's symptoms and the TKM doctor's constitutional determination results. In order to confirm the delivery of clinical knowledge, the similarity of symptoms that professors and trainees consider important when discriminating constitution was calculated using the Jaccard coefficient. As a result of the study, our proposed tool was able to successfully evaluate the clinical knowledge of TKM doctors. Also, it was confirmed that the professor's clinical knowledge was delivered to the trainee. Our tool can be used in various fields such as providing feedback on treatment, education of training TKM doctors, and development of AI in TKM.

4차산업혁명 건설기술에 대한 학생, 교수, 실무종사자 인식차이 조사 (A Survey of Perception Differences Among University Students, Professors, and Practitioners on the Construction Technologies in the Fourth Industrial Revolution)

  • 김태완;박성훈;최병주;강영철;박경모;정운성;구충완
    • 한국건설관리학회논문집
    • /
    • 제23권3호
    • /
    • pp.95-103
    • /
    • 2022
  • 4차산업혁명은 건설뿐만 아니라 많은 산업의 발전에 큰 영향을 미치고 있으며, 인공지능 및 빅데이터와 같은 4차산업혁명과 관련된 다양한 기술이 주목받고 있다. 하지만 4차산업혁명 기술에 대한 우리나라 건설산업 구성원들의 중요도 및 준비도와 같은 인식에 대해서 알려진 바는 부족하다. 본 연구는 우리나라 건설산업 구성원들이 4차산업혁명 기술들에 대해 어떻게 인식하고 준비하고 있는지 설문을 통해 파악하였다. 또한, 산업계와 학계의 협력가능점수를 바탕으로 협력 가능성이 높은 기술은 어떤 것이 있는지 제시하였다. 설문 결과 전체적으로 4차산업혁명 기술의 중요도는 높게 평가되었지만, 준비도 및 대학교육이나 사업에서의 활용 정도는 낮게 평가되었다. 또한, 산학협력 가능성이 높은 4차산업혁명 기술은 빅데이터/인공지능, 3D 프린팅/3D 스캐닝 순서로 높게 나타났다. 이를 바탕으로 4차산업혁명 전문인력 양성 및 준비도 향상에 도움이 될 수 있으며, 나아가 4차산업혁명 기술들을 건설산업에 적용시켜 혁신을 이루는데 기여할 것이다.

딥러닝 기반 터널 영상유고감지 시스템 개발 연구 (Development of a deep-learning based tunnel incident detection system on CCTVs)

  • 신휴성;이규범;임민진;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제19권6호
    • /
    • pp.915-936
    • /
    • 2017
  • 본 논문에서는 2016년을 기준으로 강화된 터널 방재시설 설치 및 관리지침과, 점차 강화되고 있는 터널 CCTV설치 터널등급 기준과 터널 영상유고감지 시스템의 설치 운용에 대한 요구의 증가 상황을 정리해 보고하였다. 그럼에도, 가동중인 알고리즘 기반의 터널 영상유고감시 시스템의 정상 인지율은 50%가 채 되지 않는 것으로 파악되었으며, 그에 대한 주원인은 터널 내 낮은 조도, 심한 먼지로 인한 영상 선명도 저하, 낮은 CCTV 설치위치로 인한 이동객체의 겹침현상 등으로 파악되었다. 따라서, 본 연구에서는 이러한 열악한 조건에서도 영상유고 정상 인지율을 확보할 수 있는 딥러닝 기반 영상유고감지 시스템을 개발하였으며, 이에 대한 이론적 배경 제시와 시스템의 타당성 검토 연구가 진행되었다. 개발 시스템의 타당성 검토 연구는 터널 방재시설 및 관리지침 내 영상유고감지 항목중 정지 및 역주행 차량을 감지하는 주요 정보인 차량 객체 인식과 보행자 감지를 중심으로 진행되었다. 또한, (1) 동일 터널 내에서 학습과 추론이 이루어 지는 경우와 (2) 다양한 터널의 영상 정보를 통합 학습하고, 각 터널의 영상유고감지에 투입되는 경우, 두개의 시나리오를 설정하여 타당성 검토를 진행하였다. 두 시나리오 모두 일정 시간의 학습 자료와 유사한 상황에 대해서는 열악한 터널환경과 무관하게 그 감지성능이 80% 이상으로 우수하나, 추가 학습 없이 학습된 시간 구간과 멀어질수록 그 추론 성능은 상대적으로 낮은 40% 수준으로 떨어짐을 알 수 있었다. 그러나, 시간이 지남에 따라 자동으로 누적되어 확장되는 영상유고 빅데이터를 반복적으로 학습함으로써, 설치된 영상유고감지 시스템의 보완이나 보정절차 없이도 자동으로 그 영상유고감지 성능이 향상될 수 있음을 보였다.

YOLO 네트워크를 활용한 전이학습 기반 객체 탐지 알고리즘 (Transfer Learning-based Object Detection Algorithm Using YOLO Network)

  • 이동구;선영규;김수현;심이삭;이계산;송명남;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.219-223
    • /
    • 2020
  • 딥 러닝 기반 객체 탐지 및 영상처리 분야에서 모델의 인식률과 정확도를 보장하기 위해 다량의 데이터 확보는 필수적이다. 본 논문에서는 학습데이터가 적은 경우에도 인공지능 모델의 높은 성능을 도출하기 위해 전이학습 기반 객체탐지 알고리즘을 제안한다. 본 논문에서는 객체탐지를 위해 사전 학습된 Resnet-50 네트워크와 YOLO(You Only Look Once) 네트워크를 결합한 전이학습 네트워크를 구성하였다. 구성된 전이학습 네트워크는 Leeds Sports Pose 데이터셋의 일부를 활용하여 이미지에서 가장 넓은 영역을 차지하고 있는 사람을 탐지하는 네트워크로 학습을 진행하였다. 실험결과는 탐지율 84%, 탐지 정확도 97%를 기록하였다.