• Title/Summary/Keyword: AI training data

Search Result 286, Processing Time 0.029 seconds

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF

Development of Elementary Machine Learning Education Program to Solve Daily Life Problems Using Sound Data (소리 데이터를 기반으로 일상생활 문제를 해결하는 초등 머신러닝 교육 프로그램 개발)

  • Moon, Woojong;Ko, Seunghwan;Lee, Junho;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.705-712
    • /
    • 2021
  • This study aims to develop artificial intelligence education programs that can be easily applied in elementary schools according to the trend of the times called artificial intelligence. The training program designed the purpose and direction based on the analysis results of the needs of 70 elementary school teachers according to the steps of the ADDIE model. According to the survey, elementary school students developed a machine learning education program to set sound data as the theme of the most accessible in their daily lives and to learn the principles of artificial intelligence in solving problems using sound data in real life. These days, when the need for artificial intelligence education emerges, elementary machine learning education programs that solve daily life problems based on sound data developed in this study will lay the foundation for elementary artificial intelligence education.

Evaluation of Building Detection from Aerial Images Using Region-based Convolutional Neural Network for Deep Learning (딥러닝을 위한 영역기반 합성곱 신경망에 의한 항공영상에서 건물탐지 평가)

  • Lee, Dae Geon;Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.469-481
    • /
    • 2018
  • DL (Deep Learning) is getting popular in various fields to implement artificial intelligence that resembles human learning and cognition. DL based on complicate structure of the ANN (Artificial Neural Network) requires computing power and computation cost. Variety of DL models with improved performance have been developed with powerful computer specification. The main purpose of this paper is to detect buildings from aerial images and evaluate performance of Mask R-CNN (Region-based Convolutional Neural Network) developed by FAIR (Facebook AI Research) team recently. Mask R-CNN is a R-CNN that is evaluated to be one of the best ANN models in terms of performance for semantic segmentation with pixel-level accuracy. The performance of the DL models is determined by training ability as well as architecture of the ANN. In this paper, we characteristics of the Mask R-CNN with various types of the images and evaluate possibility of the generalization which is the ultimate goal of the DL. As for future study, it is expected that reliability and generalization of DL will be improved by using a variety of spatial information data for training of the DL models.

CNN-based Building Recognition Method Robust to Image Noises (이미지 잡음에 강인한 CNN 기반 건물 인식 방법)

  • Lee, Hyo-Chan;Park, In-hag;Im, Tae-ho;Moon, Dai-Tchul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.341-348
    • /
    • 2020
  • The ability to extract useful information from an image, such as the human eye, is an interface technology essential for AI computer implementation. The building recognition technology has a lower recognition rate than other image recognition technologies due to the various building shapes, the ambient noise images according to the season, and the distortion by angle and distance. The computer vision based building recognition algorithms presented so far has limitations in discernment and expandability due to manual definition of building characteristics. This paper introduces the deep learning CNN (Convolutional Neural Network) model, and proposes new method to improve the recognition rate even by changes of building images caused by season, illumination, angle and perspective. This paper introduces the partial images that characterize the building, such as windows or wall images, and executes the training with whole building images. Experimental results show that the building recognition rate is improved by about 14% compared to the general CNN model.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.

A prediction of overall survival status by deep belief network using Python® package in breast cancer: a nationwide study from the Korean Breast Cancer Society

  • Ryu, Dong-Won
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.2
    • /
    • pp.11-15
    • /
    • 2018
  • Breast cancer is one of the leading causes of cancer related death among women. So prediction of overall survival status is important into decided in adjuvant treatment. Deep belief network is a kind of artificial intelligence (AI). We intended to construct prediction model by deep belief network using associated clinicopathologic factors. 103881 cases were found in the Korean Breast Cancer Registry. After preprocessing of data, a total of 15733 cases were enrolled in this study. The median follow-up period was 82.4 months. In univariate analysis for overall survival (OS), the patients with advanced AJCC stage showed relatively high HR (HR=1.216 95% CI: 0.011-289.331, p=0.001). Based on results of univariate and multivariate analysis, input variables for learning model included 17 variables associated with overall survival rate. output was presented in one of two states: event or cencored. Individual sensitivity of training set and test set for predicting overall survival status were 89.6% and 91.2% respectively. And specificity of that were 49.4% and 48.9% respectively. So the accuracy of our study for predicting overall survival status was 82.78%. Prediction model based on Deep belief network appears to be effective in predicting overall survival status and, in particular, is expected to be applicable to decide on adjuvant treatment after surgical treatment.

The Interaction between Labor Productivity and Competitiveness in Vietnam

  • DONG, Nguyen Thi;DIEM, Tran Thi Ai;CHINH, Bui Thi Hong;HIEN, Nguyen Thi Diu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.619-627
    • /
    • 2020
  • This study measures the relationship between labor productivity and national competitiveness. Through the shift- share analysis method, the paper has separated labor productivity into three factors: static shift effect, dynamic shift effect and endogeneous effect. Next, in combination with the Granger causality test, the paper examines the relationship between the factors constituting labor productivity and competitiveness during the period from 2005 to 2017. Research data is collected from General Statistics Office and annual global competitiveness reports. The results show that the interaction between labor productivity with global competitiveness index (GCI) in Vietnam has similar variation. Nevertheless, when separating labor productivity into three effects, this relationship shows more clearly that the impact of labor productivity on GCI scores is mainly caused by endogeneous effect, not by static shift effect or dynamic shift effect. Therefore, in order to improve its competitiveness, Vietnam should focus on a number of solutions: reforming the education system towards developing thinking capacity and creative capacity; fostering industrial manners to create dynamic and flexible workers; building the State with sufficient capacity to implement consistent and transparent policies; formulating policies to attract all economic sectors so that they actively participate in the field of human resource training for the country.

A Study on Education system for nurturing Intelligent Information Technology practitioners in College (지능정보기술 실무인재 양성을 위한 전문대학 교육체계 구축 방안)

  • Kim, SungRim;Yeo, MinWoo;Cho, EunSook;Hong, YuNa;Heo, YoungJun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.63-75
    • /
    • 2021
  • It is necessary to respond to rapid technological changes such as the 4th industrial revolution and digital transformation across industries. And, a change in the university education system is necessary in a crisis situation of universities due to the rapid decrease of the school-age population. This study is aimed at practical competency with the ability to apply intelligent information technology to their job fields based on a basic understanding of intelligent information technology rather than advanced competency centered on theory and research. Instead of presenting the curriculum system diagram so that it can be flexibly applied to the design and development of the curriculum for intelligent information technology, training modules according to job and level were presented. In relation to intelligent information technology, a questionnaire was conducted for college professors, and industry experts were conducted on the derived educational modules to reflect the opinions of the industry. Industry experts said that collaboration with PBL, Capstone, and industry is necessary to improve problem-solving and communication skills.