본 연구는 코로나19 장기화로 다양한 노인돌봄 방식의 변화가 제기되고 있어, 재가의 경증치매 및 신체허약노인을 대상으로 비대면 방식의 돌봄기술을 적용하였다. 본 연구의 목적은 AI 로봇 통합관리프로그램을 적용하여 인지기능, 일상생활활동, 우울의 정도를 비교하기 위한 비동등성 대조군 전·후 유사실험 연구이다. 자료수집은 2021년 6월 4일부터 9월 17일까지이며 실험군 17명, 대조군 18명 대상자의 설문결과를 SPSS 25.0으로 분석하였다. 연구결과, 실험군은 언어기능, 일상생활활동, 우울에서 유의하게 나타났다. 특히 중등도 이상 우울과 경증 우울이 감소되는 결과를 나타냈다. 인지기능은 장기요양등급과, 일상생활활동은 동거가족과 통계적으로 유의하게 나타났다. 따라서 '위드 코로나 시대'에 노인돌봄 현장에 비대면 방식의 돌봄기술을 도입한다면, 노인의 인지기능훈련 및 우울 감소에 기여할 것으로 사료된다.
로봇은 인간을 모방하여 외부환경을 인식하고 상황을 판단하며 자율적으로 동작하는 기계를 의미한다. 로봇은 제조용 로봇과 서비스용 로봇으로 구분하고 서비스용 로봇은 전문서비스용 로봇과 개인서비스용 로봇으로 분류된다. 최근 제조업의 생산성 경쟁 심화, 안전 이슈 부상, 저출산과 고령화 심화로 인해 로봇산업이 부상하고 있다. 최근 로봇산업은 첨단기술 분야의 복합체로 기술혁신성과 성장잠재력을 가지고 있기 때문에 각광받고 있는 산업분야이다. IT, BT 및 NT 관련 요소들이 융합되어 구현되는 기술로서 그 파급효과는 매우 커지고 있다. 사회구조와 생활패턴의 변화로 인해 생명 연장과 건강에 대한 사회적인 관심이 높아지고 있으며 의료관련 분야에 많은 관심이 모아지고 있다. 이제는 인공지능(AI) 산업이 급성장하고 있기 때문에 대 중소기업 협력 강화를 통한 글로벌 경쟁력을 확보하는 것이 우선 과제이다. 대기업의 장점인 R&D 투자능력과 마케팅 능력과 중소기업의 장점인 로봇 기술을 결합해야 하며 협력 모델 구축 및 M&A를 통해 글로벌 대기업과 경쟁력을 확보해야 한다.
Technology status was investigated by analyzing patents and development cases of wearable robots. Development direction of wearable robot for wearability was also suggested by understanding the problems of wearability from development cases through the FGI technique. The number of patents per technical field was the most in the field of strength support, but AI in the technology field was different in each country; Korea was found to be poor in the category of daily living assistance. The number of patents by technology category was the most in the category of muscular strength assistance. However, the values of AI in the technology category were different in each country; Korea was found to be poor in the category of daily living assistance. Development cases were focused on rehabilitation, so development is not fulfilled uniformly by use purpose. By wearing body parts, robots with single function type were mainly developed. Rigid material robots were mainly developed. It was confirmed that wearable robot technology is not developed evenly in the category of application because it is in the early stage of the technical proposal and centered on main performance improvement. We derived twelve wearable conditions for wearable robots: Shape and Size Appropriateness, Movement Appropriateness, Composition Appropriateness, Physiological Appropriateness, Performance Satisfaction, Ease of Operation, Safety, Durability, Ease of Dressing, Ease of Cleaning, Portability and Ease of Storage and Appearance Satisfaction. Finally, the development direction of a wearable robot for each wearable condition was suggested.
본 논문에서는 교육용 로봇을 활용한 음운인식 게임 활동이 만 5세 유아들의 읽기 능력과 읽기 흥미에 미치는 영향을 살펴본다. 이를 위해 먼저 만 5세 유아를 대상으로 하는 음운인식 게임 16종을 설계한 후, 로봇이 참여하는 실험집단용 활동과 교사가 주도하는 비교집단용 활동으로 미세하게 조정하였다. 두 가지 활동은 각각 S시 소재 어린이집 2개에 재원하는 만 5세 유아 각 15명을 대상으로 6주간 16회기에 걸쳐 진행되었다. 활동 전후 각 그룹 유아들의 읽기 능력 및 읽기 흥미를 비교한 결과는 다음과 같다. 첫째, 교육용 로봇을 활용하여 음운인식 게임 활동을 진행한 실험집단이 비교집단보다 읽기 능력 특히, 총점, 단어의미, 탈락, 대치에서 보다 긍정적인 효과를 나타냈다. 둘째, 교육용 로봇을 활용하여 음운인식 게임 활동을 진행한 실험집단이 비교집단보다 읽기 흥미에서 긍정적인 효과를 나타냈다. 향후 연구에서는 교육용 로봇을 활용한 음운인식 게임 활동이 유아의 문식성과 즐거움의 동기에 긍정적 역할을 하는지를 연령별 모형을 수립하고 검증하여 발달적 추이를 살펴볼 계획이다.
본 연구의 목적은 인공지능 채팅로봇 수업방법과 컴퓨터 흥미도가 교수-학습에 미치는 영향을 살펴보는 것으로 연구결과는 다음과 같다. 첫째, 인공지능 채팅로봇 수업방법과 컴퓨터 흥미도가 학업성취도에 미치는 영향을 살펴본 결과, 컴퓨터 흥미도 수준이 집단간 학업성취도에 미치는 효과는 없었다. 둘째, 인공지능 채팅로봇 수업방법과 컴퓨터 흥미도가 학습동기에 미치는 영향을 살펴본 결과, 컴퓨터 흥미도가 집단간 학습동기에 미치는 효과가 나타났다. 셋째, 사후 피드백을 분석한 결과를 살펴보면, 인공지능 채터봇 채팅수업(방법)의 장점은 '새로움(신선함), '시공초월', '반복학습'이었고, 단점은 '답변고정', '정서성 부족'이었다. 그리고 제안점으로는 '문제해결중심'이 도출되었다. 넷째, 학업성취도, 학습동기, 피드백 간의 관계를 살펴본 결과, 학업성취도, 학습동기, 피드백 간의 상관관계는 모두 없는 것으로 드러났다. 이런 점들은 인공지능 채터봇에 대한 다각적 교수설계전략의 필요성을 제시해준다.
Reinforcement learning, which are also studied in the field of defense, face the problem of sample efficiency, which requires a large amount of data to train. Transfer learning has been introduced to address this problem, but its effectiveness is sometimes marginal because the model does not effectively leverage prior knowledge. In this study, we propose a stochastic initial state randomization(SISR) method to enable robust knowledge transfer that promote generalized and sufficient knowledge transfer. We developed a simulation environment involving a cooperative robot transportation task. Experimental results show that successful tasks are achieved when SISR is applied, while tasks fail when SISR is not applied. We also analyzed how the amount of state information collected by the agents changes with the application of SISR.
오늘날, 인공지능이 국가 경쟁력의 핵심 동력으로 부상하였으나, 사회적으로 예상치 못한 부작용도 초래하고 있다. 본 연구는 사회과학 분야의 KCI 등재학술지를 대상으로 인공지능에 관한 논문을 수집하여 사회적 측면의 주요 이슈를 고찰하고자 한다. 따라서 2016년부터 2020년까지 논문에 대한 키워드 분석을 수행하였다. 분석 결과, '로봇', '교육'에 대한 키워드가 가장 많이 나타났으며, 키워드 네트워크를 통해 상위 6개의 군집(이슈)을 도출하였다. 주요 이슈는 인공지능의 등장 배경이나 기본적인 개념, 인공지능 교육, 인공지능의 부작용, 인공지능 기반 창작물의 법적 이슈, 인공지능 제품/서비스의 이용의도, 인공지능 윤리 등을 제시할 수 있다. 본 연구 결과는 인공지능의 사회적 측면에 대한 논의를 확산하고, 국가 차원의 정책 방향을 모색하는데 활용할 수 있을 것이다.
Realization of autonomous agents that organize their own internal structure in order to behave adequately with respect to their goals and the world is the ultimate goal of AI and Robotics. Reinforcement learning gas recently been receiving increased attention as a method for robot learning with little or no a priori knowledge and higher capability of reactive and adaptive behaviors. In this paper, we present a method of reinforcement learning by which a multi robots learn to move to goal. The results of computer simulations are given.
Typically everyday human life tasks involve at least two people moving objects such as tables and beds, and the balancing of such object changes based on one person's action. However, many studies in previous work performed their tasks solely on robots without factoring human cooperation. Therefore, in this paper, we propose cooperative robot for table balancing using Q-learning that enables cooperative work between human and robot. The human's action is recognized in order to balance the table by the proposed robot whose camera takes the image of the table's state, and it performs the table-balancing action according to the recognized human action without high performance equipment. The classification of human action uses a deep learning technology, specifically AlexNet, and has an accuracy of 96.9% over 10-fold cross-validation. The experiment of Q-learning was carried out over 2,000 episodes with 200 trials. The overall results of the proposed Q-learning show that the Q function stably converged at this number of episodes. This stable convergence determined Q-learning policies for the robot actions. Video of the robotic cooperation with human over the table balancing task using the proposed Q-Learning can be found at http://ibot.knu.ac.kr/videocooperation.html.
Ha, Young-Guk;Sohn, Joo-Chan;Cho, Young-Jo;Yoon, Hyun-Soo
ETRI Journal
/
제27권6호
/
pp.666-676
/
2005
In recent years, motivated by the emergence of ubiquitous computing technologies, a new class of networked robots, ubiquitous robots, has been introduced. The Ubiquitous Robotic Companion (URC) is our conceptual vision of ubiquitous service robots that provide users with the services they need, anytime and anywhere in ubiquitous computing environments. To realize the vision of URC, one of the essential requirements for robotic systems is to support ubiquity of services: that is, a robot service must be always available even though there are changes in the service environments. Specifically robotic systems need to be automatically interoperable with sensors and devices in current service environments, rather than statically preprogrammed for them. In this paper, the design and implementation of a semantic-based ubiquitous robotic space (SemanticURS) is presented. SemanticURS enables automated integration of networked robots into ubiquitous computing environments exploiting Semantic Web Services and AI-based planning technologies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.