• Title/Summary/Keyword: AI platform

Search Result 369, Processing Time 0.022 seconds

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

The Development of Software Teaching-Learning Model based on Machine Learning Platform (머신러닝 플랫폼을 활용한 소프트웨어 교수-학습 모형 개발)

  • Park, Daeryoon;Ahn, Joongmin;Jang, Junhyeok;Yu, Wonjin;Kim, Wooyeol;Bae, Youngkwon;Yoo, Inhwan
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The society we are living in has being changed to the age of the intelligent information society after passing through the knowledge-based information society in the early 21st century. In this study, we have developed the instructional model for software education based on the machine learning which is a field of artificial intelligence(AI) to enhance the core competencies of learners required in the intelligent information society. This model is focusing on enhancing the core competencies through the process of problem-solving as well as reducing the burden of learning about AI itself. The specific stages of the developed model are consisted of seven levels which are 'Problem Recognition and Analysis', 'Data Collection', 'Data Processing and Feature Extraction', 'ML Model Training and Evaluation', 'ML Programming', 'Application and Problem Solving', and 'Share and Feedback'. As a result of applying the developed model in this study, we were able to observe the positive response about learning from the students and parents. We hope that this research could suggest the future direction of not only the instructional design but also operation of software education program based on machine learning.

Application of AI based Chatbot Technology in the Industry

  • Park, Arum;Lee, Sae Bom;Song, Jaemin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.17-25
    • /
    • 2020
  • Based on the successful use of chatbot technology, this study examined what business values each company is creating. The chatbot service contributes to improving the productivity of the company by helping to answer or respond to the questions of employees inside the company or customers. And in the field of education, Instead of instructor, AI technology responds the questions and feedback of the students to reduce the work of the instructor. In the field of commerce, offline stores provide convenient and new purchasing experiences to customers by providing product purchasing services through artificial intelligence speakers and personalization service. Although chatbot service is creating business value in some business cases, it is still limited to the process of a specific company, and the spread rate is still slowing because the service scope, convenience, and usefulness are not greater than expected. Therefore, some chatbot development service providers is providing an integrated development platform to improve usability, Chatbots have the features and advantages of providing convenience instead of answering human questions. However, there is a disadvantage that the level of communication can be lowered by reducing various human subjective views and giving mainly objective answers. Through this study, we will discuss the characteristics, advantages and disadvantages of chatbot services by comparing them.

A Study on the Information Strategy Planing for the Construction of the Online Information System for the Transaction of Art (미술품 거래정보 온라인 제공시스템 구축을 위한 정보전략계획)

  • Seo, Byeong-Min
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.61-70
    • /
    • 2019
  • The The government has recently announced its mid- to long-term plans for promoting art. With the advent of the 4th industrial revolution, contemporary art contents that are integrated with Intelligent Information Technologies such as Artificial Intelligence (AI), Virtual Reality (VR), and Big Data are being introduced, and social interest in humanities and creative convergence is rising. In addition, the industrialization of the art market is expanding amid the rising popularity of art among the general public and the growing interest of art as an investment replacement system, along with the strengthening of the creative personality education of our Education Ministry. Therefore, it is necessary to establish a strategy for transparency and revitalization of the art market by providing comprehensive information such as search functions, analysis data, and criticism by writer and price. This paper has established an information system plan for the establishment of an online supply system for art transaction information, providing auction transaction information for art market, providing report and news for art market, providing public relations platform, and providing art market analysis service and membership relationship management service. To this end, the future model was established through environmental analysis and focus analysis of the art market, and strategic tasks and implementation plans were established accordingly.

ESG Management, Strategies for corporate sustainable growth : KT's company-wide goals and strategies (ESG 경영, 기업의 지속가능성장을 위한 전략 : KT의 전사적 목표와 전략)

  • Kang, Yoon Ji;Kim, Sanghoon
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.233-244
    • /
    • 2022
  • One of the most noteworthy topics in recent corporate management is ESG(Environmental, Social, Governance). Although there are many companies that have declared ESG management, KT has declared full-fledged ESG management in 2021 and is sharing its sustainable management strategy with stakeholders. In addition, KT is strengthening ESG management by issuing ESG bonds for the first time in the domestic ICT industry. At a time when the information technology industry became more important due to COVID-19, this study attempted to examine KT's ESG management goals and strategies by dividing them into environmental, social, and governance areas. KT was aiming to achieve environmental integrity through 'environmental management', 'green competence', 'energy resources', and 'eco-friendly projects' in the environmental field. In addition, in the social field, genuine creating social value was pursued through 'social contribution', 'co-growth', and 'human rights management'. Finally, in the governance area, it was aiming for a transparent corporate management system to pursue economic reliability through 'ethics and compliance' and 'risk management'. In particular, KT was promoting its own ESG management by promoting strategies to solve environmental and social problems using AI and BigData technologies based on the characteristics of a digital platform company. This study aims to derive implications for ESG strategy establishment and ESG management development direction through KT's ESG management case in relation to ESG management, which has emerged as a hot topic.

The Effect of Telemedicine Expansion on the Structural Change and the Competition Increase in the Health Care Industry and its Policy Implication- Focusing on the case of Amazon's foray on the health care industry (원격의료 확대가 의료산업 구조변화 및 경쟁 확대에 미치는 영향과 정책적 시사점 - 미국 아마존의 헬스케어 분야 진출 사례를 중심으로)

  • Lee, Jaehee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.405-413
    • /
    • 2022
  • Since the COVID-19 outbreak, the active utilization of new health care service utilizing the ICT technology and data science such as telemedicine, smart hospital, AI dignosis has been increasingly found. In this study we examined the business model of Amazon healthcare which leads disruptive innovation in U.S. health care industry with the introduction of hybrid model of telemedicin, in-person care and customer-centric online drug delivery, home-use diagnostic kit, characterized by the integrated model combining medical care, drug delivery and the use of diagnostic kit. We showed using the multiproduct competition model that the synergy effect between the Amazon's original business areas and the healthcare business area causes the active market penetration and the increase in the customer value from utilization of the Amazon care. Using Hotelling's spatial competition model, we also showed that the competition in the health care market can be greater when consumer's choice of health care providers are available in telemedicine platform. In the long, run the issue of competition being weakened due to the exit of less competent healthcare providers may arise, to which the policymakers in the charge of fair competition in health care industry should pay attention.

A Mobility Service for the Transportation Vulnerable Based on MyData (마이데이터 기반 교통약자 이동지원서비스 모델)

  • Choi, Hee Seok;Lee, Seok Hyoung;Park, Moon Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • Various policies and services are being implemented in Korea and other countries, such as the expansion of convenience facilities for mobility support, the provision of special means of transportation, and the establishment of public transportation route plans and fare policies based on data and AI-based movement pattern analysis to ensure the mobility rights of the weak in transportation. However, A research is still needed to improve service convenience in order to more conveniently use the desired means of transportation in a necessary situation from the viewpoint of the transportation vulnerable. This study examines the policies and services for the promotion of mobility for the transportation disadvantaged, and presents a MyData-based service model for mobility support for the transportation disadvantaged. In the proposed service model, the transportation-disabled person can freely choose and use the means of transportation according to individual circumstances, and receive the same transportation welfare voucher benefits provided by the state or government. The proposed service model defines the MyData platform that supports the safe collection and use of personal data, the authentication of traffic welfare recipients based on MyData, and the payment function for fee settlement after using the service as key components. In this research, the service satisfaction from the user's point of view was investigated by implementing the proposed service model and providing a demonstration service for the transportation vulnerable in Daejeon.

Expansion of the Scope of Electronic Commerce by Standardization: An Analysis a Secondhand Clothing Market (표준화를 통한 전자상거래의 영역 확장: 중고의류 시장 사례 분석)

  • Kim, Iljoo
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • Since the first sale of a banner advertisement in 1995, electronic commerce has become a new transaction channel for consumers. With more than 20 years of its history, electronic commerce has become an important consumption channel for everyone and inexperience is no more a reason that discourages the consumption through this channel. The great expansion of this channel is now a formidable thereat to traditional channels. However, products with high asset specificity and complexity are still having difficulty to be traded over the online channel where the experience of the products for a consumer is limited. Especially, variations of the same product's quality depending on how pre-owners used the product and high complexity to describe the quality of the products prevent used goods from being traded over e-channels. Added to that, the information asymmetry between sellers and buyers for used goods makes the establishment of market transaction difficult. Considering the challenges, the current case study discusses thredUP, a clothing resale platform company. In this paper, we study how the company could overcome those limitations in this toughest resale market through the use of AI for dynamic pricing and standarized product quality ratings. In addition, we also hope to provide readers with the opportunity to understand the secondhand industries and its market, and see where it is heading for in the future.

Reduction of Inference time in Neuromorphic Based Platform for IoT Computing Environments (IoT 컴퓨팅 환경을 위한 뉴로모픽 기반 플랫폼의 추론시간 단축)

  • Kim, Jaeseop;Lee, Seungyeon;Hong, Jiman
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • The neuromorphic architecture uses a spiking neural network (SNN) model to derive more accurate results as more spike values are accumulated through inference experiments. When the inference result converges to a specific value, even if the inference experiment is further performed, the change in the result is smaller and power consumption may increase. In particular, in an AI-based IoT environment, power consumption can be a big problem. Therefore, in this paper, we propose a technique to reduce the power consumption of AI-based IoT by reducing the inference time by adjusting the inference image exposure time in the neuromorphic architecture environment. The proposed technique calculates the next inferred image exposure time by reflecting the change in inference accuracy. In addition, the rate of reflection of the change in inference accuracy can be adjusted with a coefficient value, and an optimal coefficient value is found through a comparison experiment of various coefficient values. In the proposed technique, the inference image exposure time corresponding to the target accuracy is greater than that of the linear technique, but the overall power consumption is less than that of the linear technique. As a result of measuring and evaluating the performance of the proposed method, it is confirmed that the inference experiment applying the proposed method can reduce the final exposure time by about 90% compared to the inference experiment applying the linear method.

A Study on Strategic Approaches Plans for Industrial Revitalization and Overseas Export of Smart City Technology (스마트도시 기술의 산업 활성화와 해외수출을 위한 전략적 접근 방안에 관한 연구)

  • Kim, Dae Ill;Kim, Jeong Hyeon;Yeom, Chun Ho
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.67-80
    • /
    • 2022
  • Smart City Technology, which is significant in the era of the 4th industrial revolution, greatly increases the efficiency and productivity of cities nowadays. The purpose of this study is to present a strategic approach for industrial revitalization and overseas export by analyzing the current status of smart city-related companies and discovering high-priority smart city technologies. To this end, the smart city theory and ASEAN smart city were reviewed through prior research, and a survey of companies with domestic smart city technology was conducted. As a result of the survey, it is revealed that companies with smart city technology in Korea are highly willing to export to ASEAN countries. There is a strong desire to export the following technologies: construction, traffic, green·energy, etc. And there was a high willingness to export the following services: IoT, platform, AI, etc. The following solutions have been proposed as solutions to Strategic Plans to Promote the Export: 1) Deregulation and incentives, 2) Global human resource development, 3) Information provision and strengthening of local networks, 4) Financial and public relations support.